

A thesis submitted to Birmingham City University in partial fulfillment of the requirements of

the degree of Bachelor of Science.

Evaluating and Developing a
Universal Legacy Voice Control TV

Remote With a Mobile App

Amrit Kooner – 20134667

Course Name – Integrated Master's in Computer Science (MCs)

Department Name – Computer and Data Science

School of Computing and Digital Technology

Faculty of Computing, Engineering, and the Built Environment

Birmingham City University

Submitted May 2023

ii

Abstract

This report presents the development of a universal voice control tv remote aimed towards

legacy TVs without built-in voice control functionality. Its features will consist of compatibility

with all TV models, traditional button controls, AI/ML/NLP algorithms to improve upon its voice

recognition, and also a mobile app that’s connected to the remote via Bluetooth.

Throughout this report regarding the device, its entire development life cycle will be covered,

including planning, methodology, designing, implementation, evaluation, testing, and a

conclusion.

It highlights the impact of TV remotes on improving the user experience with those with visual

or physical impairments. Overall, the report demonstrates the feasibility and success of

creating a universal voice control TV remote for legacy TVs, that aims to provide a positive

social impact.

iii

Acknowledgements

Firstly, I would like to express my appreciation to my project supervisor, Stish Sarna, for his

valuable guidance and insight upon completing my project. As well as my friends and family

for always encouraging and supporting me, their faith in me was my main source of motivation

and without that, I wouldn't have been able to complete my project.

iv

Table of Contents

Abstract..ii

Acknowledgements ... iii

Glossary... vii

List of Figures ... viii

List of Tables .. xi

1 Introduction .. 1

1.1 Problem Definition... 2

1.2 Scope ... 3

1.3 Rationale .. 5

1.4 Project Aim and Objectives ... 6

1.5 Background Information .. 7

1.5.1 Hypotheses .. 7

1.5.2 Theories ... 7

2 Literature Review ... 8

2.1.1 Keywords of Themes ... 9

2.2 Software Development Methodology Review .. 16

2.2.1 DevOps ... 16

2.2.2 Lean .. 17

2.2.3 Waterfall .. 18

2.2.4 Agile .. 19

2.3 Discussion and Recommendation ... 20

2.4.1 Literature Review Summary .. 20

2.3.1 Limitations and Options of Themes ... 22

2.3.2 Final Methodology Conclusion ... 23

3 Method and Implementation ... 24

3.1 Design .. 24

v

3.1.1 Theory ... 24

3.2 Specification / Requirements .. 26

3.2.1 User Requirements .. 26

3.2.2 Design Specification .. 29

3.3 Concept Solution and Architecture Overview .. 33

3.4 System Design .. 35

3.5 Implementation ... 43

3.5.1 Traditional Button Controls ... 43

3.5.2 Training Device with IR codes .. 45

3.5.3 Reset IR Codes ... 48

3.5.4 Voice Control Feature .. 50

3.5.5 Mobile App ... 56

3.5.6 User Visual Feedback .. 66

3.5.7 Improving Voice Recognition with NLP .. 70

4 Evaluation .. 71

4.1 Evaluation Methodology .. 71

4.1.1 Evaluation Metrics ... 72

4.2 Results .. 73

4.3 Discussion .. 82

5 Conclusions ... 84

6 Recommendations for future work ... 85

7 References .. 86

8 Bibliography ... 87

9 Appendices .. 91

9.1 Appendix A: Mind Map .. 91

9.2 Appendix B: Gantt Chart ... 92

9.3 Appendix C: Device Screenshots .. 93

9.4 Appendix D: Program Code .. 96

vi

9.5 Appendix D: Qualitative Research Survey .. 108

vii

Glossary

µs microseconds

CSAT Customer Satisfaction Score

viii

List of Figures

Figure 1 – Use Case Diagram ... 28

Figure 2 – TV remote with traditional buttons HTA .. 31

Figure 3 – TV remote with voice control HTA .. 31

Figure 4 – mobile app with traditional buttons HTA ... 31

Figure 5- the mobile app with voice control HTA ... 32

Figure 6 – Box Diagram Showing Architecture Overview .. 33

Figure 7 – Concept Solution and Development Steps with Agile Methodology 34

Figure 8 – TinkerCAD design of OFF/ON simulation for microphone using LED 37

Figure 9 – TinkerCAD design using IRemote library to print out the remotes IR codes 38

Figure 10 – Flowchart of Main Device ... 39

Figure 11 – Flowchart of Mobile Application Connectivity with Main Device 40

Figure 12 – Low Fidelity Design of Mobile Application GUI ... 41

Figure 13 – High Fidelity Design of Mobile Application GUI... 42

Figure 14 – Setting pinMode ... 43

Figure 15 – Setting Pins .. 43

Figure 16 – Declaring IRremote Library .. 43

Figure 17 – Setting IR output and input to components ... 43

Figure 18 – Print IR Signals Code ... 44

Figure 19 – Printed IR codes ... 44

Figure 20 – Delarcing EEPROM Library .. 45

Figure 21 – Training IR Code Variables .. 45

Figure 22 – saveEEPROM Function ... 45

Figure 23 – Training IR Signals Code ... 46

Figure 24 – loadEEPROM Function .. 47

Figure 25 – Calling loadEEPROM ... 47

Figure 26 – Training IR codes Process ... 47

Figure 27 – Set Reset Pin ... 48

Figure 28 – Set Reset pinMode ... 48

Figure 29 – resetEEPROM Function ... 48

Figure 30 – Calling resetEEPROM .. 48

Figure 31 – Calling CheckerResetButton Function .. 49

file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926713
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926718
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926719
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926720
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926721
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926722
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926723
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926724
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926725
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926726
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926727
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926728
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926729
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926730
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926731
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926732
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926733
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926734
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926735
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926736
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926737
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926738
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926739
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926740
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926741
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926742
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926743

ix

Figure 32 – Reseting Saved IR Codes .. 49

Figure 33 – Delclare VR3 Library .. 50

Figure 34 – set VR Pin And buf/records .. 50

Figure 35 - Set Button Mic pinMode .. 50

Figure 36 – Set Button Mic Pin .. 50

Figure 37 – waitForButton Function .. 51

Figure 38 – Check If VR Is Powered ... 51

Figure 39 – Training Voice Coammands ... 52

Figure 40 – Load Command Variables .. 52

Figure 41 – Load Initial Commands ... 52

Figure 42 – Call commandLoad Fucntion .. 52

Figure 43 – Voice Control Power Pause Resume Code .. 53

Figure 44 – Voice Control Numbers Code ... 54

Figure 45 – Voice Control Volume Code ... 55

Figure 46 – Voice Control Channel Code .. 55

Figure 47 – Declaring SoftwareSerial Library .. 56

Figure 48 – App Deisgn in MIP App Inventor .. 56

Figure 49 – App Bluetooth connectivity ... 57

Figure 50 – App Bluetooth connect Checker ... 57

Figure 51 – App Voice Recognition Block ... 58

Figure 52 – App Main Button Control Blocks ... 59

Figure 53 – State Message String ... 60

Figure 54 – Declaring BT object .. 60

Figure 55 – appLogic Function .. 60

Figure 56 – appLogic Main Body Code ... 61

Figure 57 – Calling appLogic Function .. 62

Figure 58 – App Not Connected .. 62

Figure 59 – App Bluetooth Connecting .. 63

Figure 60 – App Connected .. 63

Figure 61 – App Voice Control 1 ... 64

Figure 62- App Voice Control 2 ... 64

Figure 63 – App Display Input ... 65

Figure 64 - User Feedback Pinmodes ... 66

Figure 65 – User Feedback Pins ... 66

Figure 66 - UserFeedBack Function .. 66

file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926744
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926745
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926746
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926747
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926748
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926749
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926750
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926751
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926752
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926753
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926754
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926755
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926756
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926757
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926758
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926759
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926760
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926761
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926762
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926763
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926764
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926765
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926766
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926767
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926768
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926769
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926770
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926771
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926772
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926773
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926774
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926775
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926776
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926777
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926778

x

Figure 67 - Calling UserFeedBack Function .. 66

Figure 68 - Calling UserFeedBack Function .. 67

Figure 69 - Calling UserFeedBack Function .. 67

Figure 70 – Calling UserFeedBack Function ... 68

Figure 71 – Device Powered User Feedback .. 68

Figure 72 – Volume User Feedback .. 68

Figure 73 – Channel User Feedback ... 68

Figure 74 – Number User Feedback ... 68

Figure 75 – Parent Command User Feedback .. 69

Figure 76 - Enter App User Feedback Block .. 69

Figure 77 – Exit App User Feedback Block ... 69

Figure 78 – Enter/Exit App User Feedback Code .. 69

Figure 79 – Mind Map ... 91

Figure 80 – Gantt Chart .. 92

Figure 81 – Device Turned OFF .. 93

Figure 82 – Device Turned ONN ... 93

Figure 83 – Mic ONN and Parent Command Active .. 94

Figure 84 – Device Side Profile 1 .. 94

Figure 85 – Device Side Profile 2 .. 95

Figure 86 – Device App Connected ... 95

Figure 87 – Survey Part 1 ... 108

Figure 88– Survey Part 2 .. 1

Figure 89 – Survey Part 3 ... 2

file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926779
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926780
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926781
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926782
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926783
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926784
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926785
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926786
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926787
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926788
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926789
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926790
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926791
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926792
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926793
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926794
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926795
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926796
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926797
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926798
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926799
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926800
file:///C:/Users/ufult/Desktop/Work/University/YEAR%203/PROJECT/FINAL/final.docx%23_Toc133926801

xi

List of Tables

Table 1 – Keywords of Themes Table ... 10

Table 2 – User Requirements Table .. 27

Table 3 - System Requirements Table .. 30

Table 4 – System Parts Table ... 36

Table 5 – Evaluation Metrics Table ... 72

Table 6 – Performance Testing Results .. 77

Table 7 – Survey Results Summary .. 80

1

1 Introduction

This section describes the planning phase of the project, outlining the problem definition,

scope, rationale, aims, and objectives. This section lays the foundation for the rest of the report

by providing a clear understanding of the project's objectives and goals, demonstrating the

importance of the project and how it will be implemented.

2

1.1 Problem Definition

The popularity of voice assistants and the growth of the smart home industry over the years

has increased the demand for home automation devices with voice-control capabilities, such

as AI assistants and voice-controlled TV remotes, offered by large companies such as

Samsung, LG, and Sony.

However, the origin of the issue is that many legacy TVs are not compatible with smart voice-

controlled TV remotes, and many non-smart TVs do not include any voice-control features.

These larger companies mentioned don’t offer alternatives for non-smart legacy TVs.

This issue is significant as non-smart legacy TVs lack voice-control features, and people with

disabilities or mobility issues would be restricted from using the TV. Because of this their

independence and quality of life may be significantly impacted since they could need help from

others to carry out simple tasks like changing the channel or adjusting the volume.

3

1.2 Scope

The boundaries of the final project, state what will be included, and what will be excluded

from it.

1.2.1 Includes

1. Voice control feature with several voice commands that will work on legacy TVs. This

is the main feature of the device; it’s how I will achieve the goal of the aim and solve

the problem definition. Research shows that voice control is becoming an increasingly

popular way to control devices.

2. Traditional button controls, as I want to give users multiple ways to use the device to

achieve a leger target audience. It’s known that traditional button control is still a very

reliable way to control devices, which is why they are simply commonly used to this

day.

3. AI/ML to improve voice control with NLP in terms of reliability and efficiency. Research

shows that integrating AI/ML can greatly improve the accuracy of voice recognition

devices.

4. A power button for the microphone so it is not always listening, will also save power

consumption and minimize security concerns. Research shows that users are

concerned about their privacy on voice-related devices such as mobile phones, as they

think it's always listening to them.

5. LED to show if a valid voice command was entered to give visual feedback to the user.

Visual feedback is important to indicate that the action was recognized and understood

by the device. Research shows that providing visual feedback improves the user

experience and reduces confusion.

6. The app can connect to the device via Bluetooth, as I want multiple options for users

to use the device to achieve a leger target audience. This feature is unique for TV

remotes which can improve accessibility for users. Research has found that

smartphones have become an integral part of modern life, enhancing communication,

productivity, and convenience.

4

1.2.2 Excludes

1. Support for multiple languages other than English, as I only speak English so it will be

very difficult to integrate other languages. Research has shown that focusing on a

single language can produce better results over numerous languages, which can be

challenging and resource intensive.

2. A remote case for the device at this moment, as I don’t think I can make it compact

enough to fit it into one. If I did make a case however it would have been 3D printed

using recycled materials.

3. Security features, so everyone should be able to use the device's voice recognition.

Research shows that users prioritize ease of use over complicated security features

for home entertainment devices, such as AI assistants.

4. Integration with voice assistants like Alexa or Google Assistant, as I don’t want the

device to be too complicated to use. Research shows that integrating with third-party

voice assistants can be complicated and resource intensive.

5. Users to set their custom voice commands, as I don’t want the device to be too

complicated to use. Research shows that custom voice commands are useful, but not

an important feature for most users.

6. An OFF/ON button as the device should be always listening for IR codes so it can be

used via traditional buttons. Research shows that removing the button can reduce user

cognitive load and create a more seamless and intuitive user experience.

5

1.3 Rationale

I chose this topic because I was interested in working with voice-related technologies, as they

are essentially the future as everything is becoming more automated with voice recognition

that can be controlled via voice commands.

To solve the problem definition (1.1), I aim to build a legacy infrared TV remote control with

integrated voice recognition, that can also be connected and controlled with a mobile app to

give users more options to use the device. It intends to provide easy and accurate voice-

controlled features for non-smart legacy TVs without built-in voice-control capabilities, and to

improve upon the reliability of present voice-controlled devices using AI/ML modeling, such as

noise filtering. I aim it to be a cheaper alternative to present-day voice-controlled devices.

Companies within the field of home automation and AI could benefit from the device, as it

could persuade them to offer more voice-controlled products that work on non-smart legacy

TVs. Also, for elderly and disability organizations like care homes as the device aims to be a

cheaper alternative to current voice-controlled TV remotes.

The device will benefit those who cannot afford smart TVs, so this device offers a cheaper

alternative. It will also benefit those who have mobility disabilities or body impairments and

those who want a generally better TV viewing experience. Overall, this project aims to have a

positive impact on society and make people's lives simpler with its voice control feature.

6

1.4 Project Aim and Objectives

The main aim of the project is to create an infrared TV remote with integrated voice recognition

that utilizes AI/ML with natural language processing to improve the efficiency and reliability of

voice recognition, it can also connect to a mobile application to offer users more options and

functionality. The device is to work on non-smart legacy TVs that are not capable of voice

recognition. What I hope to achieve from this aim is for the device to positively impact society

by making people’s lives easier with its integrated voice recognition feature.

1.4.1 Objectives

• Research the main key topics and themes of the project, being Arduino, Voice

Recognition, App development, and Natural Language Processing.

• Study existing technologies and platforms related to voice recognition.

• Design a prototype of the device using computer circuit designing software.

• Model digital wireframes for the app using graphics designing software.

• Build the initial device with all required parts including voice recognition.

• Program a noise filtering algorithm to model to improve the accuracy of voice

recognition using NLP.

• Develop a mobile application with a GUI that wirelessly links to the device so can be

controlled using a mobile application.

• Test all aspects of the project, being the device and the mobile application. As well

as to make any required changes for errors and improvements.

• Evaluate the performance and functionality of the device, including the accuracy of

voice recognition, the ease of use of the app, and the overall user experience.

7

1.5 Background Information

States the hypotheses and theory, which are to be tested in the course of undertaking the

project.

1.5.1 Hypotheses

• The device having voice control, traditional buttons, and a mobile app can improve

accessibility and convenience when controlling legacy TVs and increase user

experience.

• Voice recognition technology that combines AI/ML and NLP will increase the

accuracy and reliability of voice control for legacy TVs.

• Offering a mobile app for legacy TVs can attract younger audiences who prefer to

use their smartphone as a remote control. Also, more convenient as people always

have their mobile phones on them.

• Using a mobile app to control TVs instead of a physical TV remote can minimize the

need for them, thus contributing to an eco-friendlier lifestyle.

1.5.2 Theories

• Voice control tied with AI/ML with NLP can make devices more accessible and

inclusive for individuals with disabilities or limitations that may make physical remote

control difficult.

• Voice control tied with AI/ML using NLP can cause devices to be more accessible for

people with physical disabilities or visual limitations, which can make physical remote

controls hard to use.

• Using voice recognition and mobile apps to control devices is part of a larger trend

toward connected homes and the Internet of Things. The future may move away from

traditional device remotes.

• Developing mobile apps for traditional TV represents an opportunity for innovation

and market disruption in the TV industry.

8

2 Literature Review

2.1 Themes

The main themes of the project that will be explored within the literature review involve

Computer Circuits Design and Development With Arduino, Analog-to-Digital Conversion, App

Design and Development, Artificial Intelligence with Natural Language Processing, as well as

Voice Capturing and Recognition. The other themes that I have previously mentioned in the

Literature Search Methodology (2), will link into the main themes acting as sub-themes, being

programming in C/C++ and Java. A mind map was created showing the thought process in

Appendix A.

2.1.1 Computer Circuits Design and Development with Arduino

The first theme is Computer Circuits Design and Development with Arduino, this needs to be

explored as it will be the main computer of the device as well as the foundation for all the other

themes, so it is the first and most important theme. Various literature on existing Arduino

infrared devices will be explored to see how they are configured. It links with C/C++

programming language which also needs to be explored as it will be the main language the

device is programmed in. The analysis of this theme can help me identify how to set up the

Arduino environment and determine what components to use and how to configure them.

2.1.2 Voice Capturing and Recognition

The second theme is Voice Capturing Recognition, this needs to be explored as it is the main

feature of the device that differentiates it from becoming an ordinary infrared TV remote. It is

also required so I can achieve the desired outcome from the creation of the device. The device

will need to be able to capture and understand the user’s voice, so various literature on existing

voice-controlled devices will be explored to see how they work and what techniques were

used. The analysis of this theme can help me better understand how voice capturing and

recognition work, as well as what other concepts are involved.

2.1.3 Analog-to-Digital Conversion

The third theme is Analog-to-Digital Conversion (ADC), this needs to be explored as it’s the

process of analog input signals being converted into digital output signals which is the core

functionality of the device so it can work. The user's voice inputs will be converted into IR code

outputs with this process. I also want to monitor the analog and digital signals so thee the

before and after the conversion. The analysis of this theme can help me better understand

how the ADC process works, what other concepts are involved, existing libraries for monitoring

analog and digital signals, and challenges within the ADC process.

9

2.1.4 App Design and Development

The fourth theme is App Design and Development, this needs to be explored as it is another

feature of the device where it can be connected and controlled with a mobile device through

a downloaded app. This is because I want to give users multiple ways to use the device. The

theme links with the Java programming language which will be the main language this feature

is programmed in, so this will also need to be explored. Various literature on existing devices

with mobile application connectivity will be explored. The analysis of this theme can help me

understand how to design and develop an interactive mobile application and how to distribute

it to various app stores like Play Store and Apple Store.

2.1.5 Natural Language Processing (NLP)

The fifth and final theme is Natural Language Processing (NLP) involving Machine Learning

(ML) and Artificial intelligence (AI) that will be used for processing and cleaning analog signals.

This needs to be explored as analog signals will be improved by using a filtering technique

that will remove unwanted noise. The analysis of this theme can help me better understand

how NLP works, and what else can be achieved from utilizing it which I may also implement

alongside filtering, what programming languages and libraries are involved, as well as to

identify suitable AI/ML filtering algorithms.

2.1.1 Keywords of Themes

The table shows the keywords for each theme that will be utilized to obtain related information

from pieces of literature.

Theme

Keywords

Computer Circuits Design and
Development with Arduino

• IDE

• Components

• Voice components

• Infrared

• IR codes

• libraries

• C/C++ Programming

• Troubleshooting

• Debugging

• Arduino software

• Circuit designing software.

• Arduino devices

Voice Capturing and Recognition

• Techniques

• Voice commands

• Voice capture

• Voice control

• Voice recognition

10

 • Voice-based devices

• Speech

• Arduino

Analog-to-Digital Conversion

• Signal processing

• Signals

• Digital signals

• Analog signals

• Output signals

• Input signals

• ADC

• DSP (digital signal processing)

• Sampling

• Resolution

• Signal compression

• Arduino

Natural Language Processing

• Filtering

• Noise reduction

• Noise removal

• Techniques

• Algorithms

• Libraries

• Deep learning

• Artificial Intelligence

• Machine Learning

• Arduino

App Design and Development

• Java Programming

• IDE

• Libraries

• Software

• Mobile SDK

• Bluetooth

• Android

• iOS

• App designing software

• App development

• UX (user experience)

• UI (user interface)

• Arduino

Table 1 – Keywords of Themes Table

11

2.2 Review of Literature

Eight pieces of literature were researched and reviewed for each theme better understand to

better understand them using search terms (1.2.2) and keywords (2.1.6). I research and

referenced reports, articles, and books with the majority having a high citation count.

2.2.1 Computer Circuits Design and Development with Arduino

“Simon Monk” (2019), covers the fundamentals of the Arduino microcontroller. It focuses on

topics such as how the board works, how to set up the Sketch IDE, and a tour of the board's

interface explaining the role of each I/O serial port, GPIO pin, and microprocessor. It was

stated that the Arduino Uno is the most commonly used board in the family and the best

beginner board for developing small to medium projects. It also dives into Arduino

programming language which is a simplified version of C/C++. ”Brian Evans” (2011),

explains how to use common circuit components such as capacitors, resistors, diodes, and

transistors.

“What is Arduino?” (2015), provides common potential errors and troubleshooting methods

revolving around uploading code on the Arduino, being the board not getting recognized by

the IDE and not listed under devices, IDE not uploading after the upload button is pressed,

and the “avrdude: stk500_recv()” error message when the programmer is not responding.

Arduino has lots of community support and documentation, the best bet when running into

unexpected problems is to search online for advice. Forum websites like Reddit and

Stackoverflow will be used to check if someone has already come across the same error as

me, if not I will post a form explaining the issue on multiple threads.

TV remotes emit IR codes consisting of 0’s and 1’s that are unique for each button, that’s then

received and computed by the TV to perform the designated action, by “Duncan Wilson”

(2021). “Chauhan Naman” (2017), covers the process of finding the IR codes on a TV remote

using an Arduino with the IRremote library.

“Sadat Hasan Shehab” (2020), developed a voice recognition-based home automation

system that uses a voice control module to perform speech recognition with the LabVIEW

library to monitor sound wave frequency patterns. “Rosalyn R Porle” (2022), developed a

speech-based number recognition system compatible with the Malay language using a voice

control module. Malay numbers one through ten are recognized and corresponding LEDs that

link to each number light up. “Khoa N. Van” (2018), developed a text-dependent speaker

recognition system using a voice control module, that identifies different users based on their

previously stored voice samples.

12

2.2.2 Voice Capturing and Recognition

“Rafizah Mohd Hanifa” (2020), covers voice biometrics with advances made in the last

decade and challenges in this area of research, like the issue with white noise. It states the

characteristics of the voice biometric, with accuracy being high, ease of use being high, user

acceptance being high, ease of implementation being high, and cost being low. Other

concepts used within voice recognition include algorithms such as VQ to improve accuracy

and speed, “Jianliang Meng” (2012).

Spoken language is effective for human-human interaction but often has severe limitations

when applied to human-computer interaction as they are slower at processing this information,

so single-worded to short sentences as commands are used for computers to better

understand our speech, “Ben Shneiderman” (2000). “V Radha” (2012), compares different

approaches and methods used for voice capturing, being spontaneous recognition that can

interpret non-words and sentences such as slang, connected/continuous recognition that can

interpret connected words to sentences with minimal pauses between them, and isolated

recognition that only interpret single worded commands. The speech recognition system can

be classified based on the type of words, vocabulary size, and speaker dependency, “Pratik

K. Kurzekar” (2014). It was stated that the vocabulary size of a system affects the complexity,

processing requirements, and accuracy of the system.

“Shweta Singhal” (2015), developed an Automatic speech recognition system using the

connected/continuous voice recognition approach. HMM, and DTW is used at the back end

for feature mapping of unknown words, with MFCC for feature extraction. “Seok Yeong

Jeong” (2006), developed a speech recognition for the automobile navigation system using

the connected/continuous voice recognition approach. Uses the two-pass search algorithm

that can manage a large vocabulary list at a high speed. “Priyanka P. Patil” (2014), developed

a connected word speech recognition system using the connected/continuous voice

recognition approach. Uses STE and SC algorithms for speech segmentation, and MFCC and

HMM for feature extraction.

13

2.2.3 Analog-to-Digital Conversion

“B. P. Lathi” (2009), explains the process of converting analog input signals such as sounds

to digital output signals as binary codes, so systems can understand the human voice. The

device will be capturing sound as analog signals, so a microphone will be used. An ADC

microprocessor is used for the analogy-to-digital conversion process, Arduino has one built

into the board, “Brian Evans” (2011). The analogRead()/digitalRead() function can be used

to measure and read analog/digital inputs from the analog input/output pins on an Arduino.

“W.A. Smith” (2022), demonstrates how to use this function and display raw analog values.

“Li Lee” (1996), discusses the process of the normalization technique with ADC, where

analog inputs are scaled to fit within the input range, so analog signals can be accurately

sampled and converted to digital signals, as outside the input range they would not be

accurate. Some types of normalization algorithms that are suited for scaling signals are Min-

Max, Energy, and Z-score normalization.

“Ze-bin Wu” (2019), discusses how the vector quantization algorithm can be used to

represent the digital output of the ADC in a more efficient way using lossy data compression

by distribution vector signals. It produces an output of higher resolution with many bits per

sample by reducing the amount of data required to represent the signal. It works by partitioning

a high-dimensional vector set so they are stored more efficiently, but some information is lost.

It sacrifices the quality of information (accuracy) for efficiency with compression (speed). Many

VQ algorithms were explored, such as classified VQ, feedback VQ, and fuzzy VQ. I may

implement this algorithm within the device if the ADC process is too slow.

“Kunjabihari Swain” (2021), utilizes the LabVIEW library which possesses interactive real-

time visualization tools so analog and digital signals can be readable and understandable for

monitorization for comparison and analysis. MATLAB library is similar to LabVIEW as it also

has visualization tools that can be used to view analog and digital signals. It also offers pre-

processing tools for cleaning and preparing data like for noise filtering. “Onur Toer” (2019),

utilized the MATLAB library for visualizing raw signals.

Unwanted noise and other distortions in the analog input signal can affect the accuracy of the

digital output of ADC. So techniques should be considered to improve the performance of the

ADC process by minimizing the effect of noise on signals, with filtering, decimation, and noise

shaping algorithms, “Zilong Jiao” (2018).

14

2.2.4 App Design and Development

“Ghita K” (2018), covers the best practices in the development and management of mobile

applications with the essential concepts of the field, such as interface design with user

experience, developing, testing, security, and distribution. Various technologies and tools

used in mobile app development are analysed, including frameworks like Android and iOS, as

well as programming languages such as Java and Kotlin which was one of the sub-themes.

Programming languages and tools for developing mobile apps are platform-specific, for

example, Android apps are created in Java via the Eclipse-based Android SDK, whereas

Apple iOS apps are developed using either Objective-C or Swift via the XCode tool, “Ivano

Malavolta” (2016).

The Arduino Uno does not have integrated Bluetooth technology which is required for

connectivity with mobile devices. A Bluetooth module should be connected to the Arduino to

enable Bluetooth functionality with other devices; however, they have connectivity short

ranges, “Ján Hurtuk” (2017). A Bluetooth module was added to the system requirements.

“Anshuman Kamboj” (2019), developed a Portable Water Quality Testing Device as an

android mobile application, that was created using the MIT App Inventor web application.

“Jignesh Patoliya” (2015), developed a war field spy robot with night vision capabilities and

the wireless camera that can be viewed from an android mobile phone with an application,

that was created using the MIT App Inventor web application. “Seree Khunchai” (2019),

developed a smart home system that can be controlled via an android mobile application, that

was created using the MIT App Inventor web application. It works by dragging and dropping

components into a design view and using a visual block language to program the behaviour

of the application, “Siu-Cheung Kong” (2019). It is popular in circuit development with

microcontrollers like Arduino because it’s easy to program the application to interact with

physical devices and sensors.

“Hwansoo Kang” (2015), covers how to use MIT App Inventor to develop android mobile

applications. The development process is composed of five stages, which are discovering an

idea, designing with wire-framing, prototyping, implementation/testing, and deployment.

15

2.2.5 Natural Language Processing (NLP)

“Terena Bell” (2021), explains that NLP is a branch of AI/ML used to train computers using

algorithms to understand, process, and generate human language, as well as to improve

existing computers with data cleaning and pre-processing. NLP is heavily used within various

voice and text-based technology, such as search engines, machine translation services, and

voice assistants. NLP has many challenges such as ambiguity where sentences and words

have two or more interpretations, and synonyms can lead to issues because many different

words are used to express the same idea, “Inés Roldós” (2020).

One of the most challenging problems in digital signal processing is to receive the information

signal without any loss. It is important to reduce random noise and improve the performance

of the signal, “Hina Magsi” (2018). Cleaning and pre-processing techniques within NLP will

be used for the device for filtering unwanted noise from analog signals. The common method

for the removal of noise is the optimal linear filtering method, and some algorithms in this

method are Wiener, Kalman, and spectral subtraction technique filtering, “Kshipra Prasadh”

(2017). “Jacob Benesty” (2005), states that it is the Weiner Filtering algorithm is the most

fundamental and popular approach as it works well with other cleaning and pre-processing

algorithms.

It is not possible to apply NLP techniques directly on the Arduino platform, as NLP typically

requires a lot of processing power and memory, which are limited on Arduino boards.

However, external computers can be used to perform NLP tasks and communicate back and

forth with Arduino. Python offers useful and powerful libraries for NLP, such as NLTK and

spaCy with NLTK being the most popular NLP Python library, “Claire D. Costa” (2020). C++

also offers useful and powerful libraries for NLP, such as text2vec and MeTA, “Steve Emms”

(2019). Both Python and C++ NLP libraries were researched as I still was not sure what

programming language to use for it. For now, I will stick to NLTK with Python as there are

more resources online that could assist me.

“Nitin Hardeniya” (2016), covers NLP essentials using NLTK with Python involving various

cleaning and pre-processing concepts and algorithms, such as filtering algorithms for

removing unwanted noise, feature extraction that can also be used for filtering, and

normalization for scaling to eliminate redundancy and inconsistent dependency in signals.

Each technique is explained and demonstrated. Some noise filtering algorithms analysed are

Lemmatization, Stemming, stop word, and transforming chunks and trees. It was stated that it

is a good resource for those wanting to quickly master NLP with the NLTK library.

16

2.2 Software Development Methodology Review

A review of methodologies to better understand them to then identify the most suitable

one to use through the development of the device. I review the Agile, DevOps, Lean, and

Waterfall methodologies as these are some of the top methodologies used for software

development.

2.2.1 DevOps

The DevOps methodology emphasizes collaboration and communication between

development and operations teams. Its goal is to accelerate development, increase efficiency,

and produce quality software that meets user standards. DevOps consists of seven phases

including planning, development, continuous integration, implementation, monitoring,

feedback, and improvement. It can be used by independent developers or teams but

implementing it can be challenging and requires changes to an organization's working

environment.

For this current project, DevOps is not suitable as it is more suitable within a team

environment, although it can still be used independently, even though it’s still useable

independently, implementing and following it will be challenging alone. Using a methodology

that benefits me to work independently is better for the project he worked on independently.

However, successful implementation depends on effective collaboration and communication

between teams. Despite its challenges the benefits of DevOps, including faster development,

higher quality software, and increased efficiency, make it a promising approach for this project,

“Damonlang Lamare” (2023).

Strengths –

• Provides the flexibility to regularly update and add features to the TV remote and

app.

• Encourages continuous feedback, which can help the development team quickly

identify and resolve issues with the TV remote and its app.

• Accelerate development and deployment, potentially bringing the TV remote and its

app to market faster.

Weaknesses –

• Compatibility issues can appear with different TV and mobile models, and resolving

these issues with DevOps can be challenging.

• Focus heavily on automation, which is not always appropriate for certain aspects of

app development, such as GUI/UX/UI design and testing.

• May not be compatible with older systems, which is what the device is aimed

towards, legacy TVs.

17

2.2.2 Lean

The Lean methodology is developed to maximize productivity and minimize waste. It consists

of five stages, being value, value stream, flow, pull, and perfection. The Lean approach is well-

suited for projects that require flexibility and adaptability throughout the development process.

The goal is to accelerate the software development process, increase efficiency and quality,

and reduce costs.

For the current project, a Lean approach may be a good choice, as requirements are subject

to change during development. Lean focuses on flexibility and adaptability, which can be

particularly useful when working on a project with changing requirements such as this.

However, implementing the lean methodology can be challenging and may require changes

in the organization. Despite this, the Lean methodology's ability to optimize the development

process and increase efficiency while maintaining a focus on customer value makes it a

powerful approach for this project, “Jon Terry” (2018).

Strengths –

• A customer-based approach helps ensure that the final product meets user

needs. This is especially important for electronics such as TV remotes.

• Help develop and refine the remote control's voice recognition algorithms, which

is a main feature of the project.

• Helps minimize waste to reduce development costs for the remote and app.

Weaknesses –

• Difficult to ensure that all aspects of the TV remote development process are

completed, and the project is on schedule.

• Difficult for a solo developer to track progress and ensure that all aspects of device

development are completed on time, especially if developing multiple features such

as devices, apps, and AI/ ML/NLP.

• The customer feedback approach may not be effective in improving the developed

algorithm, as the customer may not be able to provide the technical feedback needed

to improve the algorithm.

18

2.2.3 Waterfall

The Waterfall Method is a linear process consisting of six stages, being requirements,

design, implementation, integration, deployment, and maintenance. While simple to

understand and manage, it is also inflexible, making it difficult to adapt to changing

requirements once a phase is completed.

For the current project, the waterfall approach is not suitable. This is because the

requirements of the project may change during development and the Waterfall

methodology cannot adapt effectively to these changes.

Overall, the Waterfall method is a well-defined approach that works best for projects with

stable requirements that will not change throughout development, "Leeron Hoory" (2022).

However, it is not suitable for projects like mine, which require flexible and adaptive

development.

Strengths –

• A comprehensive testing phase could help ensure that the device's technical

requirements, including AI algorithms for voice recognition, are thoroughly tested

and functioning as intended.

• Easier to manage the device's technical components, such as app integration

and traditional button controls, etc.

• Ensures that all technical requirements and testing, including app, voice

commands, button controls, and AI, are well planned, documented, and

thoroughly tested.

Weaknesses –

• Not suitable for devices that require constant change, such as a voice-controlled

TV remote using AI algorithms, as it can be difficult to anticipate all potential

issues and requirements in the future.

• May not be well suited for complex devices like this project.

• Voice recognition can be a complex and iterative process that may not work well

with the linear development approach of the waterfall.

19

2.2.4 Agile

Agile methodology is a very flexible approach to software development that can adapt to

changing requirements during the development process. It's about breaking the project

into smaller, more manageable pieces called sprints to constantly refine and improve

those pieces until the final product is complete. Agile consists of six phases being,

requirements, design, development, testing, deployment, and verification.

For this current project, Agile may be very suitable due to the need for adaptability and

flexibility, as the requirements of the project may change during development. It will allow

the need for changing quickly to new requirements or customer needs.

Overall, Agile is a flexible and efficient approach that allows developers to deliver high-

quality software flexibly. But it may not be appropriate for all types of projects, “wrike”

(2021). It may not be appropriate for all projects, such as those that are too large or

complex.

Strengths –

• Suitable for devices with AI voice recognition algorithms to constantly change

and adapt to changing needs.

• Customer satisfaction is very important in Agile, which can help ensure the

device will meet user standards, which is good as the device is aimed toward the

public.

• Resolve issues earlier in development, reducing overall costs and improving the

device's reliability.

Weaknesses –

• Sometimes result in device security or scalability being overlooked, which can be a

problem for AI devices and mobile apps.

• Lead to insufficient testing, which can result in bugs in the app and AI algorithms.

• A flexible development schedule can be challenging for a hardware device like the

voice control TV remote with the app and AI, which requires specific timelines for

testing.

20

2.3 Discussion and Recommendation

2.4.1 Literature Review Summary

After conducting the literature review (2.2), various useful guides, techniques, algorithms,

libraries, and circuit components have been identified. These findings will lead to future

choices being made within design and development, as it's understood what techniques,

libraries, algorithms, and circuit components to use for the development of the device, as well

as the initial order of development that will be conducted. Also achieved a better understanding

of each theme and how they are essential, and the various concepts involved.

- Techniques

Techniques found were the voice recognition type of the device, which is

connected/continuous recognition that can interpret connected words to sentences with

minimal pauses between them. The device will have two worded commands like “volume-up”

and “volume-down”. Two different techniques were found for removing unwanted noise from

signals, being feature extraction and filtering. Also, the analogRead() and digitalRead()

functions can be used for reading analog and digital signals.

- Libraries

Libraries found were NLTK for Python which offers NLP tools, as well as MATLAB and

LabVIEW which can be used for visualizing analog and digital signals, as I want to visualize

the ADC process. The IRremote library for finding the IR codes of a TV remote will be important

when each button needs to be mapped to a voice command, so the correct IR code is

outputted. Also, the Scipy.signal library that provides the wiener filter algorithm that I will use

for removing unwanted noise in signals.

- Components

Circuit components found were a voice recognition module as a common pattern found

amongst pieces of literature developing voice-based devices with an Arduino, as it can capture

voice analog signals. Also, a Bluetooth module, so I can connect a mobile phone to the device,

is needed, as the Arduino does not have integrated Bluetooth technology. These components

were added to the device requirements.

21

- Algorithms

Algorithms found were for filtering unwanted noise, such as Weiner, Kalman, and Spectral

subtraction filtering. Some algorithms were found for data cleaning and pre-processing with

vector quantization, such as K-means and fuzzy VQ for data compression to increase ADC

pre-processing and data cleaning. Also, normalization algorithms, such as Min-Max, Energy,

and Z-score normalization for scaling eliminate redundancy and inconsistent dependency in

signals. And feature extraction, such as MFCC and HMM can also be used to remove

unwanted noise from signals.

- Guides

Several guides were found that will be helpful for the development of the

device. One guide focuses on NLP NLTK, covering essential concepts and algorithms for

cleaning and pre-processing text data, another guide covers the fundamentals of Arduino and

C/C++, along with troubleshooting common errors. I also found one that uses MIT App

Inventor to develop mobile applications, which will be useful for connecting the mobile app

with Arduino. The development process involves discovering an idea, wire-framing,

prototyping, implementation/testing, and deployment, which I will follow.

22

2.3.1 Limitations and Options of Themes

From the review of the literature (2.2), various limitations were found within the themes. In the

Computer Circuits Design and Development with Arduino theme, it was discovered that the

Arduino had no Bluetooth technology which is required so the device can link to a mobile

phone, so it can be controlled through a mobile application. I already found a solution for this

by using a Bluetooth control module which I added to the system requirements, but now I

would have to implement this, so it makes the device more complicated to develop and it

increases development costs.

In the Natural Language Processing theme, the limitations were that few recourses involved

Arduino development using NLP and with the NLTK library that offers NLP algorithms. So, I

will continue to do more research on this theme to find resources that can help me. Another

limitation of the NLTK library is that it does not offer any filtering or feature extraction algorithms

such as the Weiner or MFCC algorithm which I want to use to remove unwanted noise from

signals. So, I will use the Scipy.signal library instead as it offers the Weiner filtering algorithm

and the MFCC feature extraction algorithm. But NLP with the NLTK may still be used as it

offers data pre-processing and cleaning techniques for normalization and vector quantization.

It was stated by “Inés Roldós” (2020) that NLP has many challenges such as ambiguity

where sentences and words have two or more possible interpretations, and synonyms can

lead to issues because many different words are used to express the same idea.

In the voice recognition theme, “Rafizah Mohd Hanifa” (2020) stated many limitations of

voice recognition in voice biometrics. Variability issues such as emotions, rate of utterances,

mode of speech, disease, and the speaker's mood. Also, voice signals may change due to

different transmission channels, such as the separate types of microphones and headphones

used. Background noise is a significant factor that impacts the accuracy of voice-based

devices, such as white noise or music worsens the performance of voice capturing and

recognition, accuracy is high for clean samples and low for noisy samples with no impact. So,

I have to make sure a sufficient filtering algorithm must be implemented, and I may develop

and test multiple of them to identify and use the best one.

I discovered two different options that can be used to remove unwanted noise from signals,

being filtering and feature extraction. I will use the filtering option as it was stated in “Jacob

Benesty” (2005), that the Weiner Filtering algorithm is the most fundamental and popular

approach as it works well with other cleaning and pre-processing algorithms, so it will work

well with Vector Quantization and Normalization which I may also implement. However, I will

use feature extraction as a backup option if filtering fails.

23

2.3.2 Final Methodology Conclusion

After the review of methodologies (2.3), I determined to use the agile methodology

throughout the development of the device. I chose this methodology as it’s the most

adaptive to change as the device may or may not use certain algorithms, such as

normalization or vector quantization since they are situational based. It was out of Agile

and Lean as they both provide flexibility, and I ultimately chose Agile as its better suited

for complex and fast-changing projects while Lean is better suited for improving processes

and reducing waste in a stable and predictable environment.

I will start with the filtering technique, but I may switch to the feature selection technique

instead if I fail to implement filtering. The algorithms used for feature selection and filtering

may change if they fail and so backup algorithms will be used. Agile is suitable for projects

of any duration, but it focuses more on the short-term such as the project which is only

that is set to be completed from April to May. It encourages continuous testing and

feedback which can make the device better before the deadline with sprints. The

weakness of the Agile methodology doesn’t apply to the project, as it's only suitable for

small to medium-sized projects such as mine.

24

3 Method and Implementation

3.1 Design

The following section of the report discusses the system and user requirements of the

device, including its features and usage with step-by-step processes. The concept

solution and development process are described using the Agile methodology, and an

Architecture Overview is provided to illustrate the appearance of the device and the

interaction between its components. The system design is outlined, including the

decision-making process for completing each step. All aspects of the device, such as

components, libraries, software, and algorithms, are defined.

3.1.1 Theory

The theory section provides information on the AI/ML/NLP algorithms I will use, and how they

will benefit the device. Being feature extraction, normalization, vectorization, and noise

filtering. However, all these algorithms may not be used depending on the device's end

performance without them, as they may make it perform worse.

3.1.1.1 Vectorization

Vectorization is a signal processing technique used in voice-controlled devices that transforms

audio signals into numerical representations that can be analysed and interpreted. It divides

the audio signals into short segments and represents each segment as a vector of numbers.

It then uses machine learning algorithms to identify patterns and features in voice recognition

and command interpretation. Vectorization reduces the complexity of audio data, makes it

easier to process, and even leads to better voice recognition. It's powerful for improving the

accuracy and performance of devices with voice control, resulting in a better user experience.

3.1.1.2 Filtering

Filtering is a technique in voice-controlled devices that removes unwanted noise from the

audio signal to improve the accuracy of voice recognition. It uses spectral subtraction and

Wiener filtering to remove noise to allow the device to better interpret voice commands.

Spectral subtraction subtracts noise from a signal, and Wiener filtering estimates the signal

and noise components. Both techniques improve voice recognition accuracy and improve the

user experience. Effective noise filtering allows users to control their devices with voice

commands without being misinformed by background noise or white noise.

25

3.1.1.3 Feature Extraction

Feature extraction is a signal processing technique used in voice-control devices to

identify important features from an audio signal for voice recognition. Algorithms such as

MFCC are used to analyse the power spectrum of the audio signal and extract only the

important features, which are then compared to a database of pre-recorded voice

commands to identify the most likely match. By improving the accuracy and reliability of

voice recognition, feature extraction can improve the responsiveness and usability of

voice control devices.

3.1.1.4 Normalization

Normalization is a signal processing technique used in voice-control devices to adjust and

scale the data within a specific range, typically from 0 to 1. This ensures that microphone input

levels are consistent for different users and environments by reducing variation in voice

commands. It involves dividing each input value by the maximum value in the input range, this

makes it easier to compare and process data. It can be combined with noise filtering and

compression to further improve the accuracy and reliability of voice recognition. Normalization

ensures the accurate recognition of voice commands from different users, regardless of tone

or volume. This improves the user experience, making the voice control devices more

responsive and easier to use.

26

3.2 Specification / Requirements

3.2.1 User Requirements

Outlines the general requirements an average user will expect and need on the device, as

well as the reasoning behind the requirement with its priority, and whether it’s functional or

non-functional.

No.

User

Requirement

Reasoning

Priority

Functionality

1. Effective
voice control
feature with
17 voice
commands

Users should be able to use their voice to
control the TV with 17 commands. They
can change the channel, volume,
pause/resume, turn the TV OFF/ON, and
numbers 0 – 9.

High Functional

2. Traditional
button
controls

Should be able to be used as a regular TV
remote. As I want to give users many
options to use the remote, targeted so
multiple people can use it.

High Functional

3. App
Graphical
User
Interface
(GUI)

GUI is required on the mobile application
so users can control the device using their
phones. The GUI must have good UI and
UX designs choices to satisfy users.

High Functional

4. Universal Users to be able to use the device on
every TV model as it will be universal.

High Functional

5. User
feedback

So users know if their action has been
successful or not. Will provide a better
user experience.

High Functional

6. Reset IR
codes

Current stored IR codes are to be cleared,
so users can enter new ones for a
different remote they want to use.

High Functional

6. Wireless
connectivity

Users to able to use the device wirelessly
like normal TV remotes, as it should be
portable.

Medium Functional

7. Easy
connectivity

The app should easily and quickly connect
with the device through Bluetooth, for
better user experience.

High Non-
functional

8. Secure
connection
with
Bluetooth
connectivity

To satisfy users, it should have a secure
and consistent Bluetooth connection
between it and the device,

High Non-
functional

9. Quick
response
time

To satisfy users, it should have a quick
and consistent response time between the
device and TV, and between the device
and mobile phone.

High Non-
functional

27

10. Compatible
with Android
and iOS
devices

To be compatible for users with both
Android and iOS devices which they can
download from the Play/App store.

Medium Non-
functional

Table 2 – User Requirements Table

28

A use case diagram was created to demonstrate the different ways users can interact and use

the device. This was created with the User Requirements (3.2.1) in mind.

Figure 1 – Use Case Diagram

29

3.2.2 Design Specification

Outlines the design specification of the system requirement of the device. Many of the system

requirements are similar to user requirements as I will provide their needs. I state each system

requirement, reasoning with priority, and whether it is functional or non-functional.

No.

System

Requirement

Reasoning

Priority

Functionality

1. Mobile GUI The app will have a GUI that will
be designed similarly to the
layout of a TV remote, so the
device can be controlled with it.

High Functional

2. Voice control
feature

The device can be controlled with
the user’s voice via many voice
commands. It will have 17 voice
commands, channel
next/previous, volume up/down,
pause/resume, power, and
numbers 0 – 9.

High Functional

3 Microphone So the user’s commands can be
captured and examined.

High Functional

4. Capture IR codes Should be able to capture IR
codes by a TV remote so they
can be stored and later outputted
once a voice command is said.

High Functional

5. Both traditional
buttons

The device will have many
buttons for traditional use. A total
of 17 buttons as they are 17
voice commands.

High Functional

6. OFF/ON button for
the microphone

The microphone should not
always be recording, so it should
have an OFF/ON button.

High Functional

7. Reset button Reset the button to clear
currently stored IR codes. This
will make the device universal as
then new IR codes can be
entered.

High Functional

8. Noise removal
feature

Algorithm for the removal of
unwanted noise in signals, such
as background noise, white
noise, music, etc. This is to
improve the accuracy of the
voice recognition feature.

Medium Non-
Functional

9. Bluetooth
technology

The device will have Bluetooth
technology so mobile devices
can be wirelessly connected to it
for the app.

High Non-
Functional

30

10. Wireless usability The device will be able to be
used wirelessly with an external
power source that can be
recharged.

Medium Non-
Functional

11. Android and iOS
mobile app
compatibility

The app will be compatible with
both Android and iOS mobile
devices.

High Non-
Functional

12. Data pre-
processing and
data cleaning

Devices may have data pre-
processing and data cleaning
algorithms to improve
performance and speed.

Medium

Non-
Functional

Table 3 - System Requirements Table

31

HTA diagrams were created to demonstrate the features of the device with each of the steps

required for its execution. This was created with the User Requirements (3.2.1) in mind.

Process of using the TV remote with traditional buttons

Figure 2 – TV remote with traditional buttons HTA

Process of using the TV remote by voice control with voice commands.

Figure 3 – TV remote with voice control HTA

Process of using a mobile app connected to the device and controlling it by traditional

buttons.

Figure 4 – mobile app with traditional buttons HTA

0. Use TV remote via
traditional buttons

1. Enter button input
on the device

2. IR code outputted
to TV

0. Use TV remote
via voice control

1. Hold microphone
button on the

device

2. Say voice
command into the

devices micrpohone

3. IR code outputted
to TV

0. Use mobile app to
control device via

traditional buttons

1. Connect mobile app
to the device via

bluetooth

2. Enter button input
on app GUI 3. IR code outputted

to TV

32

Process of using a mobile app connected to the device and controlling it by voice control

with voice commands.

Figure 5- the mobile app with voice control HTA

0. Use mobile app to
control device via

voice control

1. Connect mobile
app to the device

via bluetooth

2. Press record
button on app GUI

3. Say voice
command into the
phone microphone

4. IR code outputted
to TV

33

3.3 Concept Solution and Architecture Overview

A block diagram was created to demonstrate the device's architecture and how important

components interact with each other. This was created with the User Requirements (3.2.2) in

mind.

Figure 6 – Box Diagram Showing Architecture Overview

34

A block diagram was created to demonstrate the concept solution and development process

of the device using the Agile methodology with the objectives, involving requirements design

development testing, deployment, and review phases.

Figure 7 – Concept Solution and
Development Steps with Agile
Methodology

35

3.4 System Design

The following table outlines the many system requirements of the device, involving algorithms,

libraries, software, and circuit components. I state each system requirement and its reasoning.

No.

Requirement

Reasoning

ALGORITHMS

1. Filtering (Weiner) The first method to remove unwanted noise from signals

2. Feature Extraction (MFCC) The second method is to remove unwanted noise from signals.
(BACK UP)

3. Vector Quantization (K-
means)

Used to compress signals and represent them more efficiently,
to improve the speed

4. Normalization (Min-Max) Used to adjust the amplitude, power, or energy of a signal, to
improve accuracy

LIBRARIES

5. IRremote Displays inputted IR code of buttons pressed on an IR device

6. NLTK Offers signal processing algorithms for normalization and
vector quantization

7. Scipy.signal Offers filtering and feature extraction algorithms

8. EEPROM Used so I can save the IR codes in the Arduino ROM, so
variables can still be accessed even if the program is reset.

SOFTWARES

10. TinkerCAD Used to create circuit prototype designs

11. Figma Used to create mobile app GUI low/ mid/high fidelity prototypes

12. MIT App Inventor Used to create the mobile application and link it with the device

COMPONENTS

13. Arduino Uno Main microprocessor

14. Push buttons So the microphone can be powered only when the button is
held down, and a button that resets the IR codes.

15. LED To provide the user with visual feedback for successful actions,
like when the app is connected.

16. Bluetooth module To give Arduino Bluetooth capabilities

17. Voice control module Device to capture voice commands

18 Microphone Used with the Voice control module

19. External USB power bank So the device can be powered and used wirelessly

20. Breadboard Base of device

21. TV remote For traditional remote buttons

22. IR LED To output IR codes to the TV

23. IR receiver IR code receiver for the traditional TV remote. And so IR codes
can be read and saved into the ROM.

24. Wires To connect components. Used with the breadboard.

36

25. Resistors Used for components like LED to regulate electrical current

26. TV Will receive the IR codes from the device and perform the
output

Table 4 – System Parts Table

Figure 2 from User Requirements (3.2.1) demonstrates how users would interact with the

device, and figure 3, 4, 5, and 6 demonstrates the many steps of each feature within the

device. Figure 7 from Concept Solution and Architecture Overview (3.3), demonstrates the

device's architecture and how important components interact with each other. Table 3 and 4

from Specification / Requirements (3.2), contains all the functional and non-functional

requirements for the device for user and system requirements.

37

Created a simple TinkerCAD script that emulates how the microphone button will work, as the

microphone will only turn on while the button is held down. This is to minimize security

concerns and to save power. However, TinkerCAD did not have a microphone component so

a LED was used instead, but it will work the same as the LED will only get power when the

button is held down. It works by checking the button's state in an if statement, if it's high so

when the button is pressed, it will power the LED, else it won’t power the LED.

Figure 8 – TinkerCAD design of OFF/ON simulation for microphone using LED

38

Created a simple TinkerCAD script that emulates how hex codes will be captured with the IR

receiver so they can be printed and compared using the IRremote library. This is needed so

IR codes can be trained, and so traditional button controls can work. It works by contest

looping to check for any incoming IR signals, and if received its stored in the results variable.

A switch statement is used to check if the received value matches the hex code, If it does then

the LED is turned on for 150 milliseconds. As with the real device, the LED with turn on and

output the corresponding IR signal of the input.

Figure 9 – TinkerCAD design using IRemote library to print out the remotes IR codes

39

A flow chart was created to demonstrate the flow of a process for the device and the decisions

needed to complete each process. One flow chart was created for the main device and another

for connectivity with the mobile application.

Figure 10 – Flowchart of Main Device

40

Figure 11 – Flowchart of Mobile Application Connectivity with Main Device

41

A low-fidelity design was created for the mobile app GUI using Figma. It consists of a mic and

exit buttons, as well as other traditional TV remote buttons.

Figure 12 – Low Fidelity Design of Mobile
Application GUI

Exit app button

Power button for TV

Number buttons

Pause/resume buttons

Volume UP/DOWN buttons

Channel NEXT/PREVIOUS buttons

Bluetooth button to

connect mobile app

to the device.

Mic button so user

can enter voice

commands.

42

Then a high-fidelity design was created with added color that hope to increase user

experience. Decided on dark colours theme as it makes the bottom nav bar stand out.

Figure 13 – High Fidelity Design of Mobile
Application GUI

43

3.5 Implementation

This section of the report discusses the implementation of the system, including the various

components, techniques, and libraries utilized in the development process. It provides an

overview of the technical aspects of the system, along with insights into the design decisions

and the thought and step-by-step process throughout the development of the device.

3.5.1 Traditional Button Controls

Began with the development of traditional button controls, which involved a regular TV remote,

breadboard, IR LED, and an IR receiver. The regular TV remote will offer the traditional button

controls as it essentially will be integrated with the main device. So, the IR receiver will take

in its IR signals from the remote and saves it as a HEX code, to be then converted and

outputted as the same IR signal received.

Set the IR receiver to pin 7 and the IR receiver to pin 13 in conjunction with a 470-ohm resistor

to limit the current flowing through it and prevent it from being damaged. The IR LED was set

to an OUTPUT pinMode and the IR receiver to an INPUT pinMode, so signals can be sent

and received to and from the components. For debugging and testing purposes a regular LED

was used to visually see the IR

signals as they are invisible with

the IR LED.

The method used to convert the received IR signals to HEX codes and back to IR signals,

were tools offered by the IRremote library that helps in building custom TV remote control

applications. First set the IRsend to the IR LED pin so that allows IR signals can be outputted,

and the IRrevc to the IR receiver pin that allows IR signals can be checked if they were inputted

to be then decoded to HEX codes. Wanted to convert the IR signal to a HEX code so for

debugging and testing if unique IR signals were being captured, and also to print them in the

serial monitor.

Figure 17 – Setting

IR output and input

to components

Figure 15 – Setting

Pins
Figure 14 – Setting

pinMode

Figure 16 –

Declaring

IRremote Library

44

The code first checks if an IR signal has been detected by the IR receiver. If so, the IR signal

is decoded as a set HEX code and saved as a string called inputCode. And then the stringed

HEX code was parsed and saved as an unsigned long called hexCode using the strtoul

function, as the HEX code needs to be a number format to be outputted with the IR LED.

It’s saved as an unsigned long as IR codes are usually represented as 32-bit or 64-bit

hexadecimal numbers. The maximum 32-bit IR code that can fit in a 32-bit unsigned integer

on an Arduino is 4,294,967,295. In comparison, the maximum value for a 32-bit signed integer

on the Arduino is only 2,147,483,647, which may not be suitable for some larger IR codes.

Could not retrieve the HEX code as an unsigned long, it had to be saved as a string first.

Then the hexCode variable is given as an argument for the printIRcode method, which

converts and prints out the HEX code as an IR signal to the previously specified IR LED in

IRsend. It uses a NEC protocol to encode the HEX code into a 32-bit signal as it provides a

sufficient amount of unique codes with 4,294,967,296 possible combinations.

Figure 18 – Print IR Signals Code

Figure 17 – printIRcode Function

Figure 19 – Printed IR codes

The hexCode variable is also printed into the serial monitor as I

wanted to visualise each unique HEX code. Lastly, the

IR.resume function is called to reset the IR receiver so it can wait

to receive the next IR signal.

45

3.5.2 Training Device with IR codes

For the device to be universal and work on all TV models, it needs to be first trained with the

same IR codes that are used by the TV model. It is trained by first entering the IR codes into

the device's IR receiver using a remote that is already connected to the TV, so the

corresponding IR codes can be saved and reused.

These IR codes need to be hard saved, so they are not lost when the device is reset, or power

is lost. To do this the EEPROM library was used which allows variables to be hard saved into

the Arduino ROM, and from where they can be later accessed.

To then save these variables into the ROM, the saveEEPROM function was created that

opens the ROM with begin and stores the given variables with put with a unique memory

address being their size so these variables can be later accessed, then closes the ROM with

the end.

Figure 20 –

Delarcing

EEPROM Library

Figure 21 – Training IR

Code Variables

Figure 22 – saveEEPROM Function

The variables that will be saved in the ROM is an unsigned long array

called irCodes that will hold 17 HEX codes, as the device will have

17 commands. And an int called numCodesSaved that will make sure

all 17 HEX codes are saved.

46

The code to train the device was added with the functionality of using traditional remote

controls, as they both use the IR receiver to retrieve the IR code to convert them into HEX

codes. It first checks if numCodesSaved is under 17 and if hexCode is not 0, if true then it

saves the hexCode in the irCodes array in the index of numCodesSaved which is initially 0

but goes up by 1 after a HEX code is saved inside the array, so the next HEX code can be

saved at the next index within the array, this continues until numCodesSaved equals 17 which

is the maximum number of commands the device has.

numCodesSaves get checked if it's 17, meaning that the irCodes array is full of HEX codes. If

true, then it calls the saveEEPROM function so save the irCodes array and numCodesSaves

into the ROM.

The hexCode is checked not to be 0 as sometimes it saves as 0, which is not wanted. Also,

the device needs to be trained in a certain order so the correct IR code can be printed, the

order being power, pause, resume, numbers 0-9, volume up/down, channel next/previous.

Figure 23 – Training IR Signals Code

47

Now that the HEX codes have been saved in the ROM, they need to be accessed from it. The

loadEEPORM function was created for this, which retrieves the previously saved variables

using get, being numCodesSaved and irCodes.

Shows the process of 17 HEX codes being recognised and saved via the serial monitor.

Figure 25 – Calling

loadEEPROM

Figure 24 – loadEEPROM Function

loadEEPROM was called in the setup function and it was the first entity

declared. So, now the variables with intact values can be accessed and

used, the HEX codes can be converted into IR codes whenever need

which will be later done.

Figure 26 – Training IR codes Process

48

3.5.3 Reset IR Codes

The resting of IR codes is essential so the device can be compatible with other TVs, as it

would not make sense for the device to only work on the TV it was first trained with. For this,

the EEPROM library was used again to access the Arduino ROM so the hard-saved variables

can be deleted from it.

The user resets the IR codes by pressing a button on the device, so this button is set to pin

10 with a pinMode of INPUT_PULLUP as it will send the device a signal when the button is

pressed. It's given INPUT_PULLUP as in Arduino it simplifies the circuit by using the internal

pull-up resistor of the board to pull the button input pin to a logical HIGH state when the button

is not pressed, eliminating the need for an external resistor. Pressing the button connects the

input pin to the ground, creating a logical LOW state.

For this, the resetEEPROM function was created that loops through the ROM's memory

locations and sets each of their values to 0.

Another function called checkResetButton was created that checks if the reset button was

pressed, if true then it calls the resetEEPROM function and prints that the IR codes have been

reset in the serial monitor.

Figure 29 – resetEEPROM Function

Figure 30 – Calling resetEEPROM

Figure 27 – Set Reset Pin Figure 28 – Set Reset pinMode

49

Now the checkResetButton function gets called to check if the reset button is pressed in the

waitForButton function, as the IR codes can only be reset when the microphone button is not

pressed.

Shows the IR codes have been reset in the serial monitor.

Figure 31 – Calling CheckerResetButton Function

Figure 32 – Reseting Saved IR Codes

50

3.5.4 Voice Control Feature

The device will be equipped with a voice control module, enabling users to operate it through

17 pre-set voice commands that first need to be created and trained. The voice control module

can be trained using the VoiceRecognitionV3 library, which provides a programming interface

for this. Trained commands will be hard saves, do they will remain intact if the device is reset,

or power is lost. Once trained the module can register new incoming voice commands and

compare them to trained valid commands, if a said command exists it performs the designated

action of printing the IR code.

A VR instance called myVR was initialized with pins connected to the voice control module,

this prepares the voice control module so it can be utilized later then the instance is called.

The uint8_t records[7] array stores voice commands from the user to compare them with

trained voice commands for acting, which will be later used for comparing this to the trained

voice command.

The uint8_t buf[64] array temporarily stores raw audio data from the user's voice input before

processing it with the voice recognition algorithm. This buffer acts like a container for audio

data while it is being prepared for analysis. Once the audio data is collected, it is used to

identify the user's voice command and determine the appropriate action to take.

A button was placed that cuts off the power to the voice control module, this is so the

microphone is only listening while the button is held down, as it shouldn’t always be listening

for security reasons. The button is set to pin 2 with a pin Mode of INPUT_PULLUP, as it will

send the device a signal when the button is held down which in this case is the power to the

component.

Figure 33 – Delclare VR3

Library

Figure 34 – set VR Pin And buf/records

Figure 36 – Set Button Mic Pin Figure 35 - Set Button Mic pinMode

51

Then a waitForButton function was created that waits until the microphone button is pressed,

while it's not pressed users can still train the device with IR codes, reset IR codes, use

traditional remote button controls, and also use the app when connected.

In setup this if statement checks if the voice control module is powered so it's ready to receive

commands, if true it continues with the rest of the code, else it loads the waitForButton function

so other features that don’t require the microphone can be used.

Figure 37 – waitForButton Function

Figure 38 – Check If VR Is Powered

52

Now these voice commands need to be initialized and trained using the programming interface

the VoiceRecognitionV3 library provides. It works by entering the Train command in the serial

monitor with an ID so the command can be later accessed, then the wanted voice command

is said into the microphone twice until they

successfully match and then it has saved.

A total of 20 voice commands will be created with 20 unique IDs, with 3 being parent

commands, 14 being sub commands and 3 being normal commands. Because all 17 main

commands should not get loaded at once, but instead be loaded when a parent command is

specified, this is called the dynamic loading technique which will make the device more

efficient and load faster.

Since all 20 voice commands have been created, they need to be defined with their ID and a

variable so they can be later loaded when needed.

Then the commandLoad function was created that loads the initial

voice commands being the normal and parent commands. The sub-

commands are later loaded if a parent command is received.

Figure 40 – Load

Command

Variables

Figure 41 – Load Initial Commands

The commandLoad function is

called in setup when the voice

control module is powered so it’s

ready to receive commands.

Figure 42 – Call commandLoad

Fucntion

Figure 39 – Training Voice Coammands

53

In the void loop the recognize function from the VR module checks if a voice command has

been received. If ret is greater than 0, it means a voice command has been recognized and

proceeds to the switch statement. The switch statement then checks the second byte of the

buf buffer, which is the current said voice command that's to be checked to the valid voice

command cases to perform the specific action being to print out the IR code corresponding

to the command. If ret is not greater than zero, it means that no voice command has been

recognized, and the code does not execute any of the cases inside the switch statement.

Figure 43 – Voice Control Power Pause

Resume Code

Whatever voice command is matched, it will call

the printIRcode function with the HEX code in the

irCodes by its corresponding index.

Again, this is why the IR codes were trained in a

specific order so they can be accessed from the

array.

The power, pause, and resume are the only

commands that don’t require a parent command

for it to be activated.

54

Figure 44 – Voice Control Numbers Code

Can see that when the number

command is matched, it loads all

the number sub commands.

Parent commands are only active

while the microphone button is

held, so sub commands can be

said continuously.

55

Figure 45 – Voice Control Volume Code

Figure 46 – Voice Control Channel Code

The volume parent command loads the

up and down sub commands.

Each of these sub commands are in a

for loop at iterated 5 times, so the TVs

volume would go +/-5, as it would not

be efficient if it went +/-1.

The channel parent command loads the

next and previous sub commands.

When no voice command is matched

then its stated so in the serial monitor.

56

3.5.5 Mobile App

After the creation of the mine device, a Mobile app was developed using MIT App Inventor

which would be able to connect to the main device via Bluetooth, enabling it to be controlled

from the app to control the TV. MIT app inventor was used as it offers voice recognition with

Google Voice To Text that’s used to add voice control to the app.

It will have the same 17 commands as the main device but no parent commands, and

additional commands for Bluetooth connectivity, exiting the app and loading voice control.

Data as bytes from the app is sent to the main device using the SoftwareSeiral Library over a

serial connection with the Arduino.

This is the design of the app on MIT App inventor, it’s not how it will look as the software

makes the design look stretched. Followed the low and high-fidelity designs when creating

the GUI.

Figure 48 – App Deisgn in MIP App Inventor

Figure 47 – Declaring

SoftwareSerial Library

57

This was added to give the app Bluetooth functionality so it can be connected to the main

device.

ListPicker1 is the Bluetooth button and when pressed it displays all Bluetooth devices for the

user to select, this is why it’s under BeforePicking as the Bluetooth client has not been chosen.

After a client has been chosen it will do AfterPicking, when the app attempts to connect to the

selected client.

This checks every second if a client is connected to the app, if true then it prints CONNECTED,

else it prints NOT CONNECTED. So the user knows if the device has successfully connected

to the client or not.

Figure 49 – App Bluetooth connectivity

Figure 50 – App Bluetooth connect Checker

58

This part handles the app's voice control feature. When the microphone button is pressed it

will load the voice recognizer being Google Voice To Text. Once a command is said it is sent

to the client in text format. Also, made it so the GUI displays the stated voice commands with

the commandLabel so the user can know what action was last taken.

Figure 51 – App Voice Recognition Block

59

Each button will send a unique message to the device when pressed. So depending on what

message was received, the corresponding action can be taken by the device.

Figure 52 – App Main Button Control Blocks

60

The Arduino does not have integrated Bluetooth technology, so a Bluetooth module was used.

Pins for the Bluetooth module were set with the SoftwareSerial library so data as bytes can

be received from the app, as it enables serial communication between the main device and

Bluetooth module. Also, a string called state was created that will store the unique message

sent from the app when a button is pressed or the stated voice command, it will store the exact

words the user says.

The appLogic function handles the functionality of the data received from the app, it decides

what IR codes are outputted based on what message is received.

These messages are sent as bytes, so they need to be collected and built as a string for them

to be compared. So the for-loop loops and collected each sent byte which is each character

of the message, to be then added on the state sting to form the message. The loop will end

when the sent message is complete.

Figure 54 – Declaring

BT object
Figure 53 – State Message

String

Figure 55 – appLogic Function

61

The state is the message is then checked to see if it matches a valid command, so the

corresponding IR code can be outputted. It works similarly to the voice control functionality of

the main device, as whatever command is matched, it will call the printIRcode function with

the HEX code in the irCodes by its corresponding index.

Figure 56 – appLogic Main Body Code

At the end the state is then set

to empty to restart the cycle, so

a new received message can be

later built from bytes.

62

Figure 57 – Calling appLogic Function

Figure 58 – App Not

Connected

The appLogic function was called in the

waitForButton function, as it works without

need of the microphone being on. It will

check if data from the app has been

received.

The app is called Legacy Universal Voice Control TV remote, and

this is how it looks like on the phone. Can see it says NOT

CONNECTED at the top, as it hasn’t been connected to the device

yet. To do so, the Bluetooth button is pressed at the bottom.

63

Figure 59 – App Bluetooth

Connecting

Figure 60 – App Connected

When the Bluetooth button is pressed, it will display the

user will all available Bluetooth technologies in their area.

The device is called HC-05, as it’s what the Bluetooth

module is called.

Once connected, it will now say CONNECTED at the top.

To disconnect the app from the device, the user can press

the yellow exit button at the bottom or close the app.

Traditional button controls will work as expected. To use the

voice control feature, the green mic button is pressed at the

bottom.

64

Figure 62- App Voice Control 2

Figure 61 – App Voice

Control 1

When the Bluetooth button is pressed, it will load Google

Text To Speech.

From there voice commands can be entered.

65

Figure 63 – App Display

Input

Once entered it will send the message to the

device so it can be checked and processed.

It will also say that voice command was said

at the top.

66

3.5.6 User Visual Feedback

Visual user feedback was developed using multiple LEDs. To show that if the app was

connected to the device, a parent command is active, a valid command was entered, the

device is powered, and the resetting of IR codes. So, 4 LEDs were used but the resetting of

IR codes used the same LED for valid command. Set the pins for every 4 LEDs in conjunction

with a 470-ohm resistor to limit the current flowing through it and prevent it from being

damaged. Each LED pin was given a corresponding output pinMode in the setup so signals

can be sent to it. Visual feedback was also developed for debugging and testing purposes to

see if each feature of the device worked as intended.

For the visual feedback of valid commands and IR code reset, a void function was created

called userFeedback was created that blinks the given LED once between a 500-millisecond

delay. This function is called when a valid voice command is received from the main device or

mobile app, including the reset button but not the mic button as the voice control module has

a LED for that. Also, when training the

device with IR codes the function will be

called, to show the IR codes are valid and

have been saved.

For valid voice control inputs, if a stated command is not matched in the system the

validCommand boolean gets set to False which was initially set to True. It then checks if the

boolean is True in an if statement, if so it calls the userFeedback function.

Figure 65 – User Feedback Pins Figure 64 - User Feedback

Pinmodes

Figure 66 - UserFeedBack Function

Figure 67 - Calling UserFeedBack Function

67

For valid traditional control input, the userFeedback function only gets called when training the

device with IR codes and not when traditional button controls are used, as the user feedback

will be displayed on the TV anyway.

For valid app inputs, it is similar to valid commands, being if a stated command from the app

is not matched in the system the validCommand boolean gets set to False which was initially

set to True. It then checks if the boolean is True in an if statement, if so it calls the

userFeedback function.

Figure 68 - Calling UserFeedBack Function

Figure 69 - Calling UserFeedBack Function

68

For resetting IR commands, the userFeedback function is called inside the

checkResetButton function when the reset button is pressed.

For visual feedback of when the device is on, the LED was simply set to HIGH in the setup

before the main part of the code is run.

For visual feedback of when a parent command is active, if a command is deemed to be a

parent command then the LED is set to HIGH until it is inactive. This is the case for every

parent command, being volume, channel, and number.

Figure 70 – Calling UserFeedBack Function

Figure 72 – Volume User

Feedback

Figure 71 – Device Powered User Feedback

Figure 73 – Channel User

Feedback

Figure 74 – Number User

Feedback

69

So, the LED will set back to LOW when the parent command is no longer active, and this

happens when the microphone button is no longer held down, as the program is reset, and

the initial commands are loaded.

For visual feedback on the connectivity of the app, the app checks if it is connected to the

device via Bluetooth, if so it sends a message to the device being enter. Same when the exit

button is pressed, it sends the device a message being exit.

Sends the client being the device the enter message if it's connected to it.

Sends the client being the device the exit message when the exit button is pressed.

The appLogic function additionally checks if the

app has sent the exit or enter message. If enter

was received it will turn the LED to HIGH, and if

exit was received it will turn the LED to LOW.

Figure 77 – Exit App User Feedback Block

Figure 76 - Enter App User Feedback Block

Figure 75 – Parent Command User Feedback

Figure 78 – Enter/Exit App User

Feedback Code

70

3.5.7 Improving Voice Recognition with NLP

Unfortunately, due to time constraints, the implementation of AI/ML/NLP algorithms into the

project was not achieved. It was planned to implement normalization, vectorization, filtering,

and feature extraction to improve the voice recognition of the device. However, it is intended

that this feature will be implemented in future iterations of the project.

71

4 Evaluation

This section provides the evaluation and testing of the overall project. Many methodologies

will be utilized to gather qualitative and quantitative research data for evaluation. This data will

help provide better insight into the project so potential improvements can be made in terms of

performance and user experience. Also, previously stated theories and hypotheses will be

investigated and evaluated using these methodologies (1.5).

4.1 Evaluation Methodology

For quantitative research, performance testing will be undertaken that focuses on evaluating

the performance of the project. This was chosen as it will help me determine if the device is

fully functional as intended without any errors or bugs. The project will be tested in terms of

response time and latency for each button and voice command, its max IR signal, voice

control, and Bluetooth range. Voice recognition consistency will also be tested using different

microphones. Both the main device and mobile app with be thoroughly tested. Data will be

collected within a table.

For qualitative research, surveys will be created and sent to participants who have used the

device. It focuses on evaluating the user experience and satisfaction of the project. This was

chosen as it will help me gather user feedback and determine if the project has achieved its

intended goal and if the problem statement has been solved. Depending on user feedback, if

it's constructive it may be utilized to improve the device's functionality and user experience.

The survey will have 11 questions that aim to obtain positive and negative constructive

feedback so potential improvements are clear. Also, a CSAT at the end measures the user's

overall satisfaction. Surveys will be created and sent using Google Forms.

72

4.1.1 Evaluation Metrics

The table shows the various metrics that will be used for each evaluation factor when

quantitative and qualitative research is undertaken.

No. Factor Metric Research Comment

1. Response time

Microseconds (μs) Quantitative Both button and voice commands
will be tested for both the main
remote and the app. Want to test
if voice or button controls have a
faster response time.

2. Latency

Microseconds (μs) Quantitative Both button and voice commands
will be tested for both the main
remote and the app. Want to text
if voice or button controls with
have lower latency.

3. Max Bluetooth connectivity
range

Meters Quantitative For mobile app only.

4. Max IR signal range

Meters Quantitative For remote only.

5. Voice control range

Meters Quantitative For remote and mobile apps. Will
use 2 different microphones, AKG
earphones, and an Elechouse
microphone.

6. Voice control accuracy

Percentage Quantitative For remote and mobile apps. Will
use 2 different microphones, AKG
earphones, and an Elechouse
microphone.

7. Error rate Units

Quantitative For remote and mobile apps.

8. User satisfaction Customer
Satisfaction Score
(CSAT)

Qualitative The last question asked in the
survey.

Table 5 – Evaluation Metrics Table

73

4.2 Results

Results of performance testing from quantitative research. Response time was calculated by

starting a timer after the input that ends after the output (response time = (end time – start

time)). But with latency, the timer ended before the output (latency = (end time – start time)).

Factor Metric Result Conclusion / Evidence

Response time (Button
Controls)

Power: 55916 μs

Pause: 55912 μs
Resume: 59292 μs

Volume Up: 54720 μs

Volume Down: 54668 μs

Channel Next: 54808 μs

Channel Previous: 54696 μs

0: 53684 μs
1: 54828 μs

2: 54820 μs
3: 55928 μs

4: 54824 μs
5: 55924 μs
6: 55940 μs
7: 57076 μs

8: 54780 μs
9: 55948 μs

Latency (Button Controls)

Power: 256 μs

Pause: 256 μs
Resume: 256 μs

Volume Up: 176 μs

Volume Down: 184 μs

Channel Next: 260 μs

Channel Previous: 216 μs

0: 260 μs
1: 256 μs
2: 256 μs

74

3: 256 μs
4: 256 μs
5: 264 μs
6: 256 μs
7: 256 μs
8: 256 μs

9: 260 μs

Response time (Voice
Controls)

Power: 57896 μs

Pause: 57748 μs

Resume: 57788 μs

Volume Up: 233564 μs

Volume Down: 291880 μs

Channel Next: 57776 μs

Channel Previous: 62284 μs

0: 57860 μs

1: 57924 μs
2: 57856 μs
3: 57836 μs
4: 57864 μs

5: 57772 μs
6: 57820 μs
7: 57720 μs
8: 57772 μs
9: 57800 μs

Latency (Voice Controls) Power: 12 μs

Pause: 8 μs

Resume: 8 μs

Volume Up: 234044 μs

Volume Down: 233828 μs

Channel Next: 4 μs

Channel Previous: 8 μs

0: 8 μs
1: 16 μs
2: 8 μs
3: 8 μs
4: 8 μs
5: 8 μs

75

6: 4 μs

7: 4 μs
8: 8 μs
9: 8 μs

Response time (App Button
Controls)

Power: 57892 μs

Pause: 55736 μs

Resume: 59140 μs

Volume Up: 280764 μs

Volume Down: 286252 μs

Channel Next: 54852 μs

Channel Previous: 55972 μs

0: 53660 μs
1: 55812 μs

2: 54816 μs
3: 55836 μs
4: 53596 μs
5: 54712 μs
6: 54756 μs
7: 55932 μs
8: 54848 μs
9: 55952 μs

Latency (App Button
Controls)

Power: 84 μs

Pause: 80 μs

Resume: 100 μs

Volume Up: 224964 μs

Volume Down: 229308 μs

Channel Next: 280 μs
Channel Previous: 384 μs

0: 168 μs
1: 176 μs
2: 180 μs
3: 224 μs
4: 232 μs
5: 244 μs
6: 252 μs
7: 292 μs
8: 304 μs

76

9: 308 μs
Response time (App Voice
Controls)

Power: 57920 μs
Pause: 55612 μs

Resume: 59112 μs

Volume Up: 280688 μs

Volume Down: 286248 μs

Channel Next: 54784 μs

Channel Previous: 51428 μs

0: 53492 μs

1: 55728 μs

2: 54640 μs
3: 55752 μs

4: 53468 μs
5: 54708 μs
6: 54680 μs
7: 55740 μs

8: 54712 μs

9: 55832 μs

Latency (App Voice
Controls)

Power: 84 μs

Pause: 88 μs

Resume: 100 μs

Volume Up: 224904 μs

Volume Down: 229372 μs

Channel Next: 260 μs

Channel Previous: 332 μs

0: 144 μs
1: 180 μs
2: 180 μs
3: 192 μs
4: 240 μs

5: 252 μs
6: 240 μs

7: 252 μs

8: 272 μs
9: 284 μs

77

Max IR signal range

Estimated 5 meters+ (15 feet+) 15 feet+ as it was the max distance it
could be tested. Good max range as
common room sizes is around the
same size.

Max Bluetooth connectivity
range

Estimated 12 meters+ (40 feet+) 40 feet+ as it was the max distance it
could be tested.

Stated online that the HC-05 module
can have a range of up to 100 meters
(or approximately 328 feet)

Voice control range (Main
Device) using Elechouse
microphone

0.5 meters (1.5 feet) Not a good range as you had to be
very close to the microphone for it to
pick up the voice.

Voice control range (Main
Device) using AKG
earphones

0.15 meters (0.5 feet) Not a good range as you had to be
very close to the microphone for it to
pick up the voice.

Voice control range (Mobile
App) using phone
microphone

0.15 meters (0.5 feet) Not a good range as you had to be
very close to the microphone for it to
pick up the voice.

Voice control range (Mobile
App) using AKG earphones

0.15 meters (0.5 feet) Not a good range as you had to be
very close to the microphone for it to
pick up the voice.

Voice control accuracy
(Main Device) using
Elechouse microphone

20 total voice commands for the main
device.
20 commands worked the first time.
Accuracy = (20 / 20) x 100%
Accuracy = 100%

Voice control worked as expected
here using an Elechouse microphone
for the main device.

Voice control accuracy
(Main Device) using AKG
earphones

20 total voice commands for the main
device.
20 commands worked the first time.
Accuracy = (20 / 20) x 100%
Accuracy = 100%

Voice control worked as expected
here using AKG earphones for the
main device.

Voice control accuracy
(Mobile App) using base
phone microphone

17 total voice commands for the app.
17 commands worked the first time.
Accuracy = (17 / 17) x 100%
Accuracy = 100%

Voice control worked as expected
here using a phone microphone for
the mobile app.

Voice control accuracy
(Mobile App) using AKG
earphones

17 total voice commands for the app.
17 commands worked the first time.
Accuracy = (17 / 17) x 100%
Accuracy = 100%

Voice control worked as expected
here using AKG earphones for the
mobile app.

Error rate (Both
remote/Mobile App)

Remote button control: 0/20 (0%)
Remote voice control: 0/20 (0%)
App button control: 0/17 (0%)
App voice control: 0/17 (0%)
72 total operations (20 + 20 + 17 + 17)
0 errors were detected.
Error Rate = (0 / 74) x 100%
Error Rate = 0%

Each command was tested, and no
errors were found for both the main
remote or mobile app. Everything
worked as expected.

Table 6 – Performance Testing Results

78

For the main remote, button controls have an average response time of 55454μs and a latency

of 256μs, while voice controls have an average response time of 57783μs and a latency of

6.8μs. This suggests that button controls have a faster response time than voice controls, but

voice controls have lower latency. For the mobile app, button controls have an average

response time of 54740μs and a latency of 2155μs, while voice controls have an average

response time of 55394μs and a latency of 7μs. Again, this suggests that button controls have

a faster response time than voice controls, but voice controls have lower latency.

From this, it's understood that with voice control the device will respond more quickly to user

inputs, and button controls will be executed faster. As lower latency improves user experience

by reducing latency between user input and system output, while faster response times

improve system efficiency by allowing the system to process more incoming commands.

There's a trend where the response time and latency for the volume up and down button/voice

commands are very high and slow, this is because it’s in a for loop so it's outputted 5 times in

the program, as it will do volume 5+ or 5-. Another trend was that the higher the number of

commands, the longer the command took to execute, as the response time and latency got

worse. This is because the higher number commands are further down in the conditional

statement as it goes from 0 to 9, and therefore takes longer to reach.

Overall, no errors were found for the main remote and mobile app. All their accuracy was

100% when each input was first declared, with both microphones tested. But the Elechouses

microphone had more range than the AKG headphones with a difference of 1 foot, so it will

be used from now on. Also, both IR signal and Bluetooth ranges are very large and sufficient

as they extended the max testing range.

79

Survey results involving user experience and satisfaction from qualitative research. This was

done using Google Forms sent via Email. This survey was done face-to-face, as they needed

to use the device so I could teach them to use it before conducting the survey. Evidence of

this is shown in 9.5 Appendix D.

No.

Question Participant
1

Participant
2

Participant
3

Participant
4

Conclusion

1. What TV model did
you use the device
with? And specify if it
was a smart or non-
smart TV.

Non-smart
LG television.

sky glass
smart tv

LG
Non smart TV

Non-smart
Tobisha

3 non-smart legacy
TVs and 1 smart TV
was used in this
research.

2. What mobile phone
did you use the app
with?

Huawei P30. samsung s9 Blackview Samsung
galaxy S20

A wide range of
mobile phones was
used in this
research.

3. Do you have any
visual or physical
impairments that
affect your
experience using TV
remotes?

No. no No. No No participants had
any visual or
physical
impairments. This is
a shame, as they
are the intended
audience before the
regular public.

4. How convenient did
you find it to have
both traditional
controls and voice
control in one
remote?

I thought
having both
traditional
controls and
voice control
in one remote
was really
convenient.

 i loved it
because it
gave me
more options
for how I
wanted to
interact with
the tv

Normal
buttons felt
better faster
to use but
voice control
was still cool
to have.

Good, as I
want to use
both

The majority of
participants liked
having both
traditional button
controls and voice
control. One
participant
preferred traditional
button controls over
voice controls.

5. Did you encounter
any issues or errors
while using the
device?

Nope, I did
not get any
errors!

no No errors. No No participants
came across any
initial errors which
is good, as I did not
come across any
errors as well with
performance
testing.

6. What additional
features would you
like to see added to
the device?

More
functionality.
So more
commands,
more buttons,
more features
like
customization
so people
can create
their own
commands.

create a
case for it as
it is probably
the main
complaint
because it
was hard to
use without a
case

Make it
wireless so it
can be
portable. Also
give it a cover
or case.

Add more
buttons

Participants would
like to see if the
device had more
functionality, like
more commands,
buttons, a case,
wireless
connectivity so its
portable, and more
customizability
features.

80

7. What did you like
most about the
device/app?

App is
responsive
with a good
layout, similar
to a real
television
remote so its
familiar to
use. Many
voice
commands to
use.

good app
worked well
on the phone
without any
issues and i
liked the
colour of
black and
white

It was very
simple to
connect it to
the remote.
The app is
good to use.

App and
device with
all features
are easy to
use

Participants liked
the fact the device
is easy and simple
to use, its many
voice commands,
and the GUI of the
app.

8. Would you
recommend this
universal remote to a
friend who also has
a non-smart TV?

I don’t think I
have any
friends who
has a smart
television, but
I would still
recommend it
to them
because of
the phone
app.

yes the voice
control will
help them
out a lot and
save them
time

Yeah.
Because I
personally
enjoy using it,
so I don’t see
why not. I
would
recommend it
to multiple
people.

Yes All participants
would recommend
the device to a
friend.

9. What did you dislike
most about the
device/app?

It was not
wireless so it
could not be
placed
anywhere.

awkward to
use because
there is no
case you
cannot hold
it without a
case it can
only be used
on the table

You can’t
really hold it
as there is no
cover or
case. You
should be
able to hold
the remote. A
3D printed
case would
be cool.

Its not
portable.

The majority of
participants dislikes
the fact the device
has no case, and
that it's not portable
as it's not wireless.
One suggested a
3D printed case.

10. Would you consider
buying the device if
you saw it in a shop?

Yes Yes Yes Yes All participants
would purchase the
device if they found
it in a shop.

11. Rate your overall
user experience with
the device

7 9 7 7 Overall average
CSAT score of 7.5.

Table 7 – Survey Results Summary

81

The device having good user experience and satisfaction is very important as its critical for

the success of any product, especially one that is intended for the public. Customers are more

likely to recommend and purchase products that are easy to use and meet their needs and

expectations. Therefore, it is important to collect user feedback and consider suggestions for

improving the device to meet user needs and provide a positive user experience.

Overall, participants rated their experience and satisfaction with the device with a CSAT score

of 7.5 which is a good indication that the majority of participants were satisfied with the device.

However, there is room for improvement based on the feedback provided by the participants

based on their likes and dislikes to future increase user experience and satisfaction. Such as

putting it in a case so it's holdable, powering it wirelessly to make the main device portable,

adding more buttons, adding more commands, and a feature where users can enter their

custom voice commands.

Trends found were that all participants did not find any errors, they would buy the device if

they found it in a shop, and they would recommend it to a friend. Also, none of them had any

visual or psychical impairments which is a shame since they are the main intended target

audience before the normal public.

82

4.3 Discussion

The results of the qualitative study demonstrate the potential benefits of integrating voice

controls, traditional buttons, universal functionality, and mobile app into one device aimed

towards legacy non-smart TVs. Throughout this study, participants reported increased

convenience and ease of use when controlling the TV with voice commands, traditional

buttons, or a mobile app. They preferred the idea to have all of these tools are their disposal

and use whatever feel right in that situation, to just only having one option.

The hypotheses stated that the availability of the mobile app is considered a desirable feature

for the younger audience, who prefer to use their smartphone as a remote control. Though

this hypothesis wasn’t directly tested, it’s safe to say if its adults enjoyed the experience, then

the younger audience would most likely too. Furthermore, as mobile apps can attract younger

audiences who prefer to use their phones as remote controls, this supports the larger trend

where homes are becoming more automated and simpler, as everything is now in one device

the mobile phone. However, not all users may want to use mobile apps to control their TVs,

especially older adults as they might prefer the old way. This is why giving users multiple

choices is important so everyone can be pleased, thus increasing user experience and

satisfaction, which is the main reason the project has 3 different ways of using it.

The qualitative results also support the hypothesis that a device with voice control, traditional

buttons, and a mobile app can improve accessibility and convenience when controlling TVs

and increase user experience. This is supported as participants rated their experience and

satisfaction with the device with a CSAT score of 7.5 which is a good indication that the

majority of participants were satisfied with the device. They also stated that they would buy

the device if they found it in a shop, and they would recommend it to a friend, meaning they

enjoyed the device. Furthermore, the study suggests that the development of mobile apps for

traditional TVs represents an opportunity for innovation and market disruption in the TV

industry, considering participants seemed satisfied with the app.

The quantitative results also found that for the main remote, button controls have an average

response time of 55454μs and latency of 256μs, while voice controls have an average

response time of 57783μs and a latency of 6.8μs. This suggests that button controls have a

faster response time than voice controls, but voice controls have lower latency. Also that for

the mobile app, button controls have an average response time of 54740μs and a latency of

2155μs, while voice controls have an average response time of 55394μs and a latency of 7μs.

Again, this suggests that button controls have a faster response time than voice controls, but

voice controls have lower latency. It’s understood that with voice control the device will

respond more quickly to user inputs, and button controls will be executed faster. As lower

latency improves user experience by reducing latency between user input and system output,

while faster response times improve system efficiency by allowing the system to process more

incoming commands. The quantitative results also showed that the volume up and down

commands had high response times and latency due to being in a loop that outputted the

command five times. Similarly, higher-numbered commands took longer to execute as they

were further down in the conditional statement, which may have contributed to the slower

response times and latency. In the real world, these results suggest that voice control has

lower latency, while button control is faster and more efficient when executing commands in

83

terms of response time. This information could be important for device manufacturers and

designers to consider when developing and optimizing future TV remotes. Users should be

able to quickly execute commands such as channel change and change volume without any

delays.

84

5 Conclusions

In conclusion, the qualitative results of the study provide important insight into how integrating

voice commands, traditional buttons, and mobile apps into a single device for legacy non-

smart TVs, can bring convenience, accessibility, and functionality, while also increasing

overall user satisfaction and experience. The disposal of multiple control options allows for a

personalized user experience that caters to the preferences of different users. The study

suggests that the development of mobile apps for legacy TVs represents an opportunity for

innovation in the TV industry.

The study's quantitative results of the study provide insights into the response times and

latency of button and voice controls, which can guide device manufacturers and designers to

optimize future TV remotes. While button commands were found to have faster response

times, voice commands had lower latency, showing the importance of considering both factors

when developing a TV remote. The study highlights the impact of user-centered design and

the value of incorporating multiple control options into TV remotes to improve user experience

and satisfaction.

85

6 Recommendations for future work

For future work to further improve the project, I would implement features I previously wasn’t

able to which was AI/ML/NLP to improve the device's voice recognition in terms of speed and

accuracy by using algorithms such as filtering, normalization, vectorization, and feature

extraction. A useful feature would be that users can create custom voice commands with their

voice, this will make the device work internationally. Another feature could be to overhaul the

device to be a multi-device controller so it can work with any IR device, it would have the

capability to store multiple IR codes and allow the user to switch between them using voice

commands or physical buttons. One recommendation from user feedback was to create a

case for the device, which I would do using cheap 3D-printed recycled materials. Another

recommendation was to give the device wireless power. Overall, these improvements would

enhance the usability and functionality of the device, making it a more appealing option for

users with diverse needs and preferences.

86

7 References

➢ wrike. (2018). What Is Agile Methodology in Project Management? [2023] from

https://www.wrike.com/project-management-guide/faq/what-is-agile-methodology-in-

project-management/

➢ Damonlang Lamare. (2023). What is DevOps? DevOps Methodology, Principles &

Stages Explained. [2023] from https://www.edureka.co/blog/what-is-devops/

➢ Jon Terry (2018). WHAT IS LEAN METHODOLOGY? [2023] from

https://www.planview.com/resources/guide/lean-principles-101/what-is-lean/

➢ Jon Terry (2022). What Is Waterfall Methodology? Here’s How It Can Help Your

Project Management Strategy. [2023] from

https://www.forbes.com/advisor/business/what-is-waterfall-methodology/

➢ Monday (2023). A New Way Of Working. [2023] from https://monday.com/

➢ Draw.io (2023). [2023] from https://draw.io/

➢ Creately (2023). Use Case Diagram Tutorial (Guide with Examples). [2023] from

https://creately.com/guides/use-case-diagram-tutorial/

➢ Erica Golightly (2022). How to Create a Flowchart in Excel (With Templates &

Examples). [2023] from https://clickup.com/blog/flowchart-in-excel/

➢ Raluca Budiu (2017). Quantitative vs. Qualitative Usability Testing. [2023] from

https://www.nngroup.com/articles/quant-vs-qual/

➢ Asmo (2018). Agile Methodology: An Overview [2023] from

https://zenkit.com/en/blog/agile-methodology-an-overview/

➢ Isaac Sacolick (2022). What is agile methodology? Modern software development

explained. [2023] from https://www.infoworld.com/article/3237508/what-is-agile-

methodology-modern-software-development-explained.html

https://www.wrike.com/project-management-guide/faq/what-is-agile-methodology-in-project-management/
https://www.wrike.com/project-management-guide/faq/what-is-agile-methodology-in-project-management/
https://www.edureka.co/blog/what-is-devops/
https://www.planview.com/resources/guide/lean-principles-101/what-is-lean/
https://www.forbes.com/advisor/business/what-is-waterfall-methodology/
https://monday.com/
https://draw.io/
https://creately.com/guides/use-case-diagram-tutorial/
https://clickup.com/blog/flowchart-in-excel/
https://www.nngroup.com/articles/quant-vs-qual/
https://zenkit.com/en/blog/agile-methodology-an-overview/
https://www.infoworld.com/article/3237508/what-is-agile-methodology-modern-software-development-explained.html
https://www.infoworld.com/article/3237508/what-is-agile-methodology-modern-software-development-explained.html

87

8 Bibliography

➢ Simon Monk. (2019). Programming Arduino Next Steps: Going Further with

Sketches, 2nd Edition. [2022] from https://www-accessengineeringlibrary-

com.bcu.idm.oclc.org/content/book/9781260143249?implicit-login=true

➢ Brian Evans. (2011). Beginning Arduino Programming. [2022] from

https://ebookcentral.proquest.com/lib/bcu/detail.action?docID=883784

➢ What is Arduino? (2015). Arduino Documentation. [2022] from

https://search.iczhiku.com/paper/TFzDJhGhd6VMaDsI.pdf

➢ Duncan Wilson (2021). How does a remote control work the TV? [2022] from

https://www.ucl.ac.uk/culture-online/ask-expert/your-questions-answered/how-does-

remote-control-work-tv

➢ Rosalyn R Porle (2022). Speech-Based Number Recognition Using KNN and SVM.

[2022] from https://ieeexplore.ieee.org/abstract/document/9936761

➢ Khoa N. Van (2018). Text-dependent Speaker Recognition System Based on

Speaking Frequency Characteristics. [2022] from

https://link.springer.com/chapter/10.1007/978-3-030-03192-3_16

➢ Sadat Hasan Shehab (2020). Home Automation System Using Gesture Pattern &

Voice Recognition For Paralyzed People. [2022] from

https://ieeexplore.ieee.org/document/9393142

➢ Chauhan Naman (2017). Finding the IR Codes of Any IR Remote Using Arduino.

[2022] from https://www.instructables.com/Finding-the-IR-Codes-of-Any-IR-Remote-

Using-Arduin/

➢ Jianliang Meng (2012). Overview of the Speech Recognition Technology. [2022] from

https://ieeexplore.ieee.org/abstract/document/6300437

➢ Rafizah Mohd Hanifa (2021). A review on speaker recognition: Technology and

challenges. [2022] from

https://www.sciencedirect.com/science/article/pii/S0045790621000318

➢ Pratik K. Kurzekar (2014). CONTINUOUS SPEECH RECOGNITION SYSTEM: A

REVIEW. [2022] from

https://www.researchgate.net/publication/270899158_CONTINUOUS_SPEECH_RE

COGNITION_SYSTEM_A_REVIEW

https://www-accessengineeringlibrary-com.bcu.idm.oclc.org/content/book/9781260143249?implicit-login=true
https://www-accessengineeringlibrary-com.bcu.idm.oclc.org/content/book/9781260143249?implicit-login=true
https://ebookcentral.proquest.com/lib/bcu/detail.action?docID=883784
https://search.iczhiku.com/paper/TFzDJhGhd6VMaDsI.pdf
https://www.ucl.ac.uk/culture-online/ask-expert/your-questions-answered/how-does-remote-control-work-tv
https://www.ucl.ac.uk/culture-online/ask-expert/your-questions-answered/how-does-remote-control-work-tv
https://ieeexplore.ieee.org/abstract/document/9936761
https://link.springer.com/chapter/10.1007/978-3-030-03192-3_16
https://ieeexplore.ieee.org/document/9393142
https://www.instructables.com/Finding-the-IR-Codes-of-Any-IR-Remote-Using-Arduin/
https://www.instructables.com/Finding-the-IR-Codes-of-Any-IR-Remote-Using-Arduin/
https://ieeexplore.ieee.org/abstract/document/6300437
https://www.sciencedirect.com/science/article/pii/S0045790621000318
https://www.researchgate.net/publication/270899158_CONTINUOUS_SPEECH_RECOGNITION_SYSTEM_A_REVIEW
https://www.researchgate.net/publication/270899158_CONTINUOUS_SPEECH_RECOGNITION_SYSTEM_A_REVIEW

88

➢ Shweta Singhal (2015). Automatic speech recognition for connected words using

DTW/HMM for English/ Hindi languages. [2022] from

https://ieeexplore.ieee.org/document/7437908

➢ Seokyeong Jeong (2018). Fast decoder design of connected word speech

recognition for automobile navigation system. [2022] from

https://ieeexplore.ieee.org/document/1598387

➢ Ben Shneiderman (2000). THE LIMITS of SPEECH RECOGNITION. [2022] from

https://go-gale-

com.bcu.idm.oclc.org/ps/i.do?p=AONE&u=uce&id=GALE|A65277890&v=2.1&it=r

➢ Priyanka P. Patil (2014). Marathi connected word speech recognition system. [2022]

from https://ieeexplore.ieee.org/document/6906687

➢ V Radha (2012). A Review on Speech Recognition Challenges and Approaches.

[2022] from

https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_

Challenges_and_Approaches-libre.pdf?1392225529=&response-content-

disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.

pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-

jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-

JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3

Pq144zsPC-

jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQl

YrVMbNitvoAKrLAeOz8mBV5BDCdilC-

~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMA

KFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

➢ B. P. Lathi (2010). Modern Digital and Analog Communication Systems. [2022] from

https://edisciplinas.usp.br/pluginfile.php/5251120/mod_resource/content/1/B.%20P.%

20Lathi%2C%20Zhi%20Ding%20-

%20Modern%20Digital%20and%20Analog%20Communication%20Systems-

Oxford%20University%20Press%20%282009%29.pdf

➢ W.A. Smith (2022). Read an Analog Input with Arduino. [2022] from

https://startingelectronics.org/beginners/arduino-tutorial-for-beginners/read-an-

analog-input-with-arduino

➢ Ze-bin Wu (2019). Vector quantization: a review. [2022] from

https://link.springer.com/content/pdf/10.1631/FITEE.1700833.pdf?pdf=inline%20link

➢ Kunjabihari Swain (2021). LI-Care: A LabVIEW and IoT Based eHealth Monitoring

System. [2022] from

https://link.springer.com/content/pdf/10.1631/FITEE.1700833.pdf?pdf=inline%20link

https://ieeexplore.ieee.org/document/7437908
https://ieeexplore.ieee.org/document/1598387
https://go-gale-com.bcu.idm.oclc.org/ps/i.do?p=AONE&u=uce&id=GALE|A65277890&v=2.1&it=r
https://go-gale-com.bcu.idm.oclc.org/ps/i.do?p=AONE&u=uce&id=GALE|A65277890&v=2.1&it=r
https://ieeexplore.ieee.org/document/6906687
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/30987239/A_Review_on_Speech_Recognition_Challenges_and_Approaches-libre.pdf?1392225529=&response-content-disposition=inline%3B+filename%3DA_Review_on_Speech_Recognition_Challenge.pdf&Expires=1674447635&Signature=FVeO6IB6dlzttB3tFWv1A5tM0eOXA-jxKqOkBgUXUt3CxoF2F1r6tgsIotBqZL1tjEZ3oNpHITO733wL-JEXqhbHjl83Dxy1faId~K~T2vz~hob9iURaxEaTCtBi2ApLgrPLkAR7dPycx~A5PDrO3Pq144zsPC-jw9Mv9m5wbe~UTbWb0tOhUBckLh2X4sX5PkOIp8pwZQuHZ9hShYYnFQpjDuj4tQlYrVMbNitvoAKrLAeOz8mBV5BDCdilC-~2G4DtPL5HVydxyL~O9z0dO3hTr7tEMhVWymRZSaAwHPehxvQ4KkCb85uI2aMAKFe9sn5pBJD49YkZkEjDNCSK6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://edisciplinas.usp.br/pluginfile.php/5251120/mod_resource/content/1/B.%20P.%20Lathi%2C%20Zhi%20Ding%20-%20Modern%20Digital%20and%20Analog%20Communication%20Systems-Oxford%20University%20Press%20%282009%29.pdf
https://edisciplinas.usp.br/pluginfile.php/5251120/mod_resource/content/1/B.%20P.%20Lathi%2C%20Zhi%20Ding%20-%20Modern%20Digital%20and%20Analog%20Communication%20Systems-Oxford%20University%20Press%20%282009%29.pdf
https://edisciplinas.usp.br/pluginfile.php/5251120/mod_resource/content/1/B.%20P.%20Lathi%2C%20Zhi%20Ding%20-%20Modern%20Digital%20and%20Analog%20Communication%20Systems-Oxford%20University%20Press%20%282009%29.pdf
https://edisciplinas.usp.br/pluginfile.php/5251120/mod_resource/content/1/B.%20P.%20Lathi%2C%20Zhi%20Ding%20-%20Modern%20Digital%20and%20Analog%20Communication%20Systems-Oxford%20University%20Press%20%282009%29.pdf
https://startingelectronics.org/beginners/arduino-tutorial-for-beginners/read-an-analog-input-with-arduino
https://startingelectronics.org/beginners/arduino-tutorial-for-beginners/read-an-analog-input-with-arduino
https://link.springer.com/content/pdf/10.1631/FITEE.1700833.pdf?pdf=inline%20link
https://link.springer.com/content/pdf/10.1631/FITEE.1700833.pdf?pdf=inline%20link

89

➢ Brian Evans. (2011). Beginning Arduino Programming. [2022] from

https://ebookcentral.proquest.com/lib/bcu/detail.action?docID=883784

➢ Zilong Jiao. (2018). Analyses on Methods for Noise Reduction of Weak Current

Signals. [2022] from https://ieeexplore.ieee.org/document/9044990

➢ Onur Toker. (2019). A Python Based Testbed for Real-Time Testing and

Visualization using TI's 77 GHz Automotive Radars. [2022] from

https://ieeexplore.ieee.org/document/9062830

➢ Li Lee (1996). Speaker normalization using efficient frequency warping procedures.

[2022] from https://ieeexplore.ieee.org/abstract/document/541105

➢ Ghita K (2018). Mobile Apps Engineering Design, Development, Security, and

Testing. [2022] from

https://www.google.co.uk/books/edition/Mobile_Apps_Engineering/iouADwAAQBAJ?

hl=en&gbpv=1&dq=mobile+apps+engineering:+design,+development,+security,+and

+testing+ebook&pg=PP1&printsec=frontcover

➢ Hwansoo Kang (2015). Application Study on Android Application Prototyping Method

using App Inventor. [2022] from https://sciresol.s3.us-east-

2.amazonaws.com/IJST/Articles/2015/Issue-19/Article26.pdf

➢ Ivano Malavolta (2016). Web-Based Hybrid Mobile Apps: State of the Practice and

Research Opportunities. [2022] from https://ieeexplore.ieee.org/document/7832988

➢ Anshuman Kamboj (2021). Development of Android App-based Portable Water

Quality Testing Device using Arduino. [2022] from

https://ieeexplore.ieee.org/document/9596398

➢ Siu-Cheung Kong (2019). Computational Thinking Education. [2022] from

https://library.oapen.org/bitstream/handle/20.500.12657/23182/1006971.pdf?sequen

ce=1#page=39

➢ Jignesh Patoliya (2015). Arduino controlled war field spy robot using night vision

wireless camera and Android application. [2022] from

https://ieeexplore.ieee.org/abstract/document/7449624

➢ Seree Khunchai (2019). Development of Smart Home System Controlled by Android

Application. [2022] from https://ieeexplore.ieee.org/abstract/document/8790919

➢ Ján Hurtuk (2017). The Arduino platform connected to education process. [2022]

from https://ieeexplore.ieee.org/abstract/document/8118531

https://ebookcentral.proquest.com/lib/bcu/detail.action?docID=883784
https://ieeexplore.ieee.org/document/9044990
https://ieeexplore.ieee.org/document/9062830
https://ieeexplore.ieee.org/abstract/document/541105
https://www.google.co.uk/books/edition/Mobile_Apps_Engineering/iouADwAAQBAJ?hl=en&gbpv=1&dq=mobile+apps+engineering:+design,+development,+security,+and+testing+ebook&pg=PP1&printsec=frontcover
https://www.google.co.uk/books/edition/Mobile_Apps_Engineering/iouADwAAQBAJ?hl=en&gbpv=1&dq=mobile+apps+engineering:+design,+development,+security,+and+testing+ebook&pg=PP1&printsec=frontcover
https://www.google.co.uk/books/edition/Mobile_Apps_Engineering/iouADwAAQBAJ?hl=en&gbpv=1&dq=mobile+apps+engineering:+design,+development,+security,+and+testing+ebook&pg=PP1&printsec=frontcover
https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2015/Issue-19/Article26.pdf
https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2015/Issue-19/Article26.pdf
https://ieeexplore.ieee.org/document/7832988
https://ieeexplore.ieee.org/document/9596398
https://library.oapen.org/bitstream/handle/20.500.12657/23182/1006971.pdf?sequence=1#page=39
https://library.oapen.org/bitstream/handle/20.500.12657/23182/1006971.pdf?sequence=1#page=39
https://ieeexplore.ieee.org/abstract/document/7449624
https://ieeexplore.ieee.org/abstract/document/8790919
https://ieeexplore.ieee.org/abstract/document/8118531

90

➢ Terena Bell (2021). What is NLP? Natural language processing explained. [2022]

from

https://www.proquest.com/docview/2521822106?accountid=10749&parentSessionId

=B6NZXQqLBpuWI7%2FMl%2FSQRg8PUbkTgGbTQFGG%2F%2BzrQQM%3D&pq

-origsite=primo

➢ Claire D. Costa (2020). Python Libraries for Natural Language Processing. [2022]

from https://towardsdatascience.com/python-libraries-for-natural-language-

processing-be0e5a35dd64

➢ Steve Emms (2019). 8 Excellent C++ Natural Language Processing Tools. [2022]

from https://www.linuxlinks.com/excellent-c-plus-plus-natural-language-processing-

tools/

➢ Nitin Hardeniya (2016). Natural Language Processing Python and NLTK. [2022] from

https://www.pdfdrive.com/natural-language-processing-python-and-nltk-

e158232635.html

➢ Inés Roldós (2020). Major Challenges of Natural Language Processing (NLP). [2022]

from https://monkeylearn.com/blog/natural-language-processing-challenges/

➢ Hina Magsi (2018). Analysis of signal noise reduction by using filters. [2022] from

https://ieeexplore.ieee.org/abstract/document/8346412

➢ Jacob Benesty (2005). Study of the Wiener Filter for Noise Reduction. [2022] from

https://link.springer.com/chapter/10.1007/3-540-27489-8_2

➢ S Kshipra Prasadh (2017). Efficiency analysis of noise reduction algorithms: Analysis

of the best algorithm of noise reduction from a set of algorithms. [2022] from

https://ieeexplore.ieee.org/document/8365318

https://www.proquest.com/docview/2521822106?accountid=10749&parentSessionId=B6NZXQqLBpuWI7%2FMl%2FSQRg8PUbkTgGbTQFGG%2F%2BzrQQM%3D&pq-origsite=primo
https://www.proquest.com/docview/2521822106?accountid=10749&parentSessionId=B6NZXQqLBpuWI7%2FMl%2FSQRg8PUbkTgGbTQFGG%2F%2BzrQQM%3D&pq-origsite=primo
https://www.proquest.com/docview/2521822106?accountid=10749&parentSessionId=B6NZXQqLBpuWI7%2FMl%2FSQRg8PUbkTgGbTQFGG%2F%2BzrQQM%3D&pq-origsite=primo
https://towardsdatascience.com/python-libraries-for-natural-language-processing-be0e5a35dd64
https://towardsdatascience.com/python-libraries-for-natural-language-processing-be0e5a35dd64
https://www.linuxlinks.com/excellent-c-plus-plus-natural-language-processing-tools/
https://www.linuxlinks.com/excellent-c-plus-plus-natural-language-processing-tools/
https://www.pdfdrive.com/natural-language-processing-python-and-nltk-e158232635.html
https://www.pdfdrive.com/natural-language-processing-python-and-nltk-e158232635.html
https://monkeylearn.com/blog/natural-language-processing-challenges/
https://ieeexplore.ieee.org/abstract/document/8346412
https://link.springer.com/chapter/10.1007/3-540-27489-8_2
https://ieeexplore.ieee.org/document/8365318

91

9 Appendices

9.1 Appendix A: Mind Map

Figure 79 – Mind Map

92

9.2 Appendix B: Gantt Chart

Figure 80 – Gantt Chart

93

9.3 Appendix C: Device Screenshots

Figure 81 – Device Turned OFF

Figure 82 – Device Turned ONN

94

Figure 83 – Mic ONN and Parent

Command Active

Figure 84 – Device Side Profile 1

95

Figure 85 – Device Side Profile 2

Figure 86 – Device App Connected

96

9.4 Appendix D: Program Code

// used libraries

#include <SoftwareSerial.h>

#include <IRremote.h>

#include "VoiceRecognitionV3.h"

#include <EEPROM.h>

// define voice command variable with their ID

#define POWER (1)

#define PAUSE (3)

#define RESUME (4)

#define VOLUME (5)

#define UP (6)

#define DOWN (7)

#define CHANNEL (8)

#define NEXT (9)

#define PREVIOUS (10)

#define NUMBER (11)

#define ZERO (12)

#define ONE (13)

#define TWO (14)

#define THREE (15)

#define FOUR (16)

#define FIVE (17)

#define SIX (18)

#define SEVEN (19)

#define EIGHT (20)

#define NINE (21)

// set BT object and pins to connect to Blutooth Module

SoftwareSerial BT(0, 1);

VR myVR(3, 4);

uint8_t records[7]; // save record

uint8_t buf[64];

// string that forms message recived from the app

String state;

// for measuring response time and latency

unsigned long startTimeRT;

unsigned long endTimeRT;

unsigned long startTimeLate;

unsigned long endTimeLate;

// variables used for training remote with IR codes so it can be universal

97

int numCodesSaved = 0;

unsigned long irCodes[16];

int resetButtonState = 0;

// PIN variables

const byte BUTTON_PIN_MIC = 2;

const byte LED_PIN = 5;

const byte LED_PIN_POWER = 6;

const byte IR_EMITTER = 7;

const byte LED_VALID_COMMAND = 8;

const byte LED_APP_CONNECT = 9;

const byte BUTTON_CODES_RESET = 10;

const byte IR_LED = 13;

// set with IR recivier and IR LED, so IR codes can be sent and recived

IRsend irsend(IR_LED);

IRrecv IR(IR_EMITTER);

// ---

// ------ pre-render code for the voice control module that was not written by

me. ------

void printSignature(uint8_t *buf, int len) {

 int i;

 for (i = 0; i < len; i++) {

 if (buf[i] > 0x19 && buf[i] < 0x7F) {

 Serial.write(buf[i]);

 } else {

 Serial.print("[");

 Serial.print(buf[i], HEX);

 Serial.print("]");

 }

 }

}

void printVR(uint8_t *buf) {

 Serial.println("VR Index\tGroup\tRecordNum\tSignature");

 Serial.print(buf[2], DEC);

 Serial.print("\t\t");

 if (buf[0] == 0xFF) {

 Serial.print("NONE");

 } else if (buf[0] & 0x80) {

 Serial.print("UG ");

 Serial.print(buf[0] & (~0x80), DEC);

 } else {

98

 Serial.print("SG ");

 Serial.print(buf[0], DEC);

 }

 Serial.print("\t");

 Serial.print(buf[1], DEC);

 Serial.print("\t\t");

 if (buf[3] > 0) {

 printSignature(buf + 4, buf[3]);

 } else {

 Serial.print("NONE");

 }

 Serial.println("\r\n");

}

// ---

// ------ all the code from here on is written by me ------

// saves given variables in the ROM so the values remain after the program is

restarted.

// this was used to save the IR codes.

void saveEEPROM() {

 // 2 variables are save being, irCodes and numCodesSaved.

 EEPROM.begin();

 EEPROM.put(sizeof(bool), numCodesSaved);

 EEPROM.put(sizeof(bool) + sizeof(int), irCodes);

 EEPROM.end();

}

// loads the saved variables with intact values from the ROM.

void loadEEPROM() {

 // 3 variables are loaded being, irCodes and numCodesSaved.

 EEPROM.begin();

 EEPROM.get(sizeof(bool), numCodesSaved);

 EEPROM.get(sizeof(bool) + sizeof(int), irCodes);

}

// resets the saved variables in the ROM.

// so different IR codes from different remotes can be configured.

void resetEEPROM() {

 // loops the ROM values and sets them all to 0.

 for (int i = 0; i < EEPROM.length(); i++) {

 EEPROM.write(i, 0);

 }

}

// used for calculating response time for preformance testing

99

void startTimerRT() {

 startTimeRT = micros();

}

void endTimerRT() {

 endTimeRT = micros();

}

void calculateRT(unsigned long endTime, unsigned long startTime) {

 unsigned long responseTime = endTime - startTime;

 Serial.print("\nRT: ");

 Serial.print(responseTime);

 Serial.println(" μs");

}

// used for calculating latency for preformance testing

void startTimerLate() {

 startTimeLate = micros();

}

void endTimerLate() {

 endTimeLate = micros();

}

void calculateLate(unsigned long endTime, unsigned long startTime) {

 unsigned long latency = endTime - startTime;

 Serial.print("\nL: ");

 Serial.print(latency);

 Serial.println(" μs");

}

// resets the program which needs to happen if voice control module loses

power, which happends if the mic button is not pressed.

void (*resetFunc)(void) = 0;

// loads the inital batch of commands whith, 3 of them being parent commands

that loads even more commands as well as clearing the inital commands.

// this was to not cause heavy load onto the arduino to load all the commands

at once.

void commandLoad() {

 myVR.clear();

 myVR.load((uint8_t)POWER); // normal command

 myVR.load((uint8_t)VOLUME); // parent command

 myVR.load((uint8_t)CHANNEL); // parent command

 myVR.load((uint8_t)NUMBER); // parent command

 myVR.load((uint8_t)RESUME); // normal command

 myVR.load((uint8_t)PAUSE); // normal command

}

// prints the given IR code to the specified IR LED with "IRsend

irsend(IR_LED);".

100

void printIRcode(int HEX_CODE) {

 // measuring latency. calcuation is done BEFORE the output

 endTimerLate();

 calculateLate(endTimeLate, startTimeLate);

 irsend.sendNEC(HEX_CODE, 32);

 // measuring response time. calcuation is done AFTER the output

 endTimerRT();

 calculateRT(endTimeRT, startTimeRT);

}

// function handels all the app logic

void appLogic() {

 myVR.clear();

 BT.begin(9600);

 bool validCommand = true;

 // for calculating reponse time and latency of the apps voice/button

controls

 if (BT.available()) {

 startTimerRT();

 startTimerLate();

 }

 // loops to build the incoming message from the app

 // state string stores the message

 while (BT.available()) {

 char c = BT.read();

 state += c;

 }

 // now checks what message was said to print out coresponding IR code to the

message

 if (state.length() > 0) {

 //Serial.println(state);

 if (state == "enter") {

 digitalWrite(LED_APP_CONNECT, HIGH);

 } else if (state == "exit") {

 digitalWrite(LED_APP_CONNECT, LOW);

 } else if (state == "power") {

 printIRcode(irCodes[0]);

 } else if (state == "pause") {

 printIRcode(irCodes[1]);

 } else if (state == "resume") {

 printIRcode(irCodes[2]);

 } else if (state == "number zero" || state == "number 0") {

 printIRcode(irCodes[3]);

 } else if (state == "number one" || state == "number 1") {

 printIRcode(irCodes[4]);

101

 } else if (state == "number two" || state == "number 2") {

 printIRcode(irCodes[5]);

 } else if (state == "number three" || state == "number 3") {

 printIRcode(irCodes[6]);

 } else if (state == "number four" || state == "number 4") {

 printIRcode(irCodes[7]);

 } else if (state == "number five" || state == "number 5") {

 printIRcode(irCodes[8]);

 } else if (state == "number six" || state == "number 6") {

 printIRcode(irCodes[9]);

 } else if (state == "number seven" || state == "number 7") {

 printIRcode(irCodes[10]);

 } else if (state == "number eight" || state == "number 8") {

 printIRcode(irCodes[11]);

 } else if (state == "number nine" || state == "number 9") {

 printIRcode(irCodes[12]);

 } else if (state == "volume up") {

 for (int i = 0; i < 5; i++) {

 printIRcode(irCodes[13]);

 }

 } else if (state == "volume down") {

 for (int i = 0; i < 5; i++) {

 printIRcode(irCodes[14]);

 }

 } else if (state == "channel next") {

 printIRcode(irCodes[15]);

 } else if (state == "channel previous") {

 printIRcode(irCodes[16]);

 } else {

 validCommand = false;

 }

 // state string is reset to nothing so a new message can be created after

new data from the app is loaded.

 state = "";

 // check if input was a valid command.

 if (validCommand) {

 userFeedback();

 }

 }

}

// provides visual feedback to the user of an LED turning on for 2 seconds for

valid and successful actions.

// was also used for testing and debugging

void userFeedback() {

 digitalWrite(LED_VALID_COMMAND, HIGH);

 delay(500);

102

 digitalWrite(LED_VALID_COMMAND, LOW);

}

// checkResetButton function that checks if the reset button was pressd, if so

it resets saved ROM variables.

void checkResetButton() {

 if (digitalRead(BUTTON_CODES_RESET) == LOW) {

 Serial.print("\nIR codes Reset");

 resetEEPROM();

 resetFunc();

 }

}

// COMMENT

void waitForButton() {

 myVR.clear();

 Serial.begin(9600);

 // this loops while the mic button is not pressed

 while (digitalRead(BUTTON_PIN_MIC) == HIGH) {

 appLogic();

 checkResetButton();

 // checks for incoming IR signals

 if (IR.decode()) {

 // for calculating reponse time and latency of the main button controls

 startTimerRT();

 startTimerLate();

 // save hex code as string, and then unsigned long

 String inputCode = String(IR.decodedIRData.decodedRawData, HEX);

 unsigned long hexCode = strtoul(inputCode.c_str(), NULL, 16);

 // code trains IR signals

 if (numCodesSaved < 17 && hexCode != 0) {

 irCodes[numCodesSaved] = hexCode;

 numCodesSaved++;

 Serial.print("\nCode captured: ");

 Serial.print(numCodesSaved);

 Serial.print(" - ");

 Serial.print(hexCode);

 userFeedback();

 if (numCodesSaved == 17) {

 saveEEPROM();

 // saves hex code in the ROM

 }

 } else {

 // normal button controls to output hex code through IR LED

103

 if (hexCode != 0) {

 printIRcode(hexCode);

 Serial.println(hexCode, HEX);

 }

 }

 IR.resume();

 }

 }

}

// ---

// setup

void setup() {

 // loads variables saved in ROM before anything else

 EEPROM.begin();

 loadEEPROM();

 // set all pin modes

 pinMode(BUTTON_PIN_MIC, INPUT_PULLUP);

 pinMode(BUTTON_CODES_RESET, INPUT_PULLUP);

 pinMode(LED_PIN, OUTPUT);

 pinMode(LED_PIN_POWER, OUTPUT);

 pinMode(LED_VALID_COMMAND, OUTPUT);

 pinMode(LED_APP_CONNECT, OUTPUT);

 pinMode(IR_LED, OUTPUT);

 // shows that the device is on

 digitalWrite(LED_PIN_POWER, HIGH);

 IR.enableIRIn();

 myVR.begin(9600);

 Serial.begin(115200);

 // checks if the mic has power or not

 if (myVR.clear() == 0) {

 Serial.println("Recognizer cleared.");

 commandLoad();

 } else {

 waitForButton();

 resetFunc();

 }

}

// ---

104

// loop

void loop() {

 static bool lastButtonState = LOW;

 bool currentButtonState = digitalRead(BUTTON_PIN_MIC);

 if (currentButtonState == HIGH && lastButtonState == LOW) {

 digitalWrite(LED_PIN, LOW);

 resetFunc(); // reset the program

 }

 lastButtonState = currentButtonState; // update last button state

 bool validCommand = true;

 int ret;

 ret = myVR.recognize(buf, 50);

 if (ret > 0) {

 startTimerRT();

 startTimerLate();

 switch (buf[1]) {

 case POWER:

 printIRcode(irCodes[0]);

 break;

 case PAUSE:

 printIRcode(irCodes[1]);

 break;

 case RESUME:

 printIRcode(irCodes[2]);

 break;

 case NUMBER:

 digitalWrite(LED_PIN, HIGH);

 myVR.clear();

 myVR.load((uint8_t)SEVEN); // sub command

 myVR.load((uint8_t)EIGHT); // sub command

 myVR.load((uint8_t)NINE); // sub command

 myVR.load((uint8_t)ZERO); // sub command

 myVR.load((uint8_t)ONE); // sub command

 myVR.load((uint8_t)TWO); // sub command

 myVR.load((uint8_t)THREE); // sub command

 myVR.load((uint8_t)FOUR); // sub command

 myVR.load((uint8_t)FIVE); // sub command

 myVR.load((uint8_t)SIX); // sub command

 startTimerRT();

 startTimerLate();

 break;

 case ZERO:

 printIRcode(irCodes[3]);

 break;

105

 case ONE:

 printIRcode(irCodes[4]);

 break;

 case TWO:

 printIRcode(irCodes[5]);

 break;

 case THREE:

 printIRcode(irCodes[6]);

 break;

 case FOUR:

 printIRcode(irCodes[7]);

 break;

 case FIVE:

 printIRcode(irCodes[8]);

 break;

 case SIX:

 printIRcode(irCodes[9]);

 break;

 case SEVEN:

 printIRcode(irCodes[10]);

 break;

 case EIGHT:

 printIRcode(irCodes[11]);

 break;

 case NINE:

 printIRcode(irCodes[12]);

 break;

 case VOLUME:

 /** turn on LED */

 digitalWrite(LED_PIN, HIGH);

 myVR.clear();

 myVR.load((uint8_t)UP); // sub command

 myVR.load((uint8_t)DOWN); // sub command

 startTimerRT();

 startTimerLate();

 break;

 case UP:

 for (int i = 0; i < 5; i++) {

 printIRcode(irCodes[13]);

 }

 break;

 case DOWN:

 for (int i = 0; i < 5; i++) {

 printIRcode(irCodes[14]);

 }

 break;

 case CHANNEL:

 digitalWrite(LED_PIN, HIGH);

106

 myVR.clear();

 myVR.load((uint8_t)NEXT); // sub command

 myVR.load((uint8_t)PREVIOUS); // sub command

 startTimerRT();

 startTimerLate();

 break;

 case NEXT:

 printIRcode(irCodes[15]);

 break;

 case PREVIOUS:

 printIRcode(irCodes[16]);

 break;

 default:

 Serial.println("Voice command undefined");

 validCommand = false;

 break;

 }

 /** voice recognized */

 printVR(buf);

 // check if input was a valid command.

 if (validCommand) {

 userFeedback();

 }

 }

}

107

108

9.5 Appendix D: Qualitative Research Survey

Figure 87 – Survey Part 1

1

Figure 88– Survey Part 2

2

Figure 89 – Survey Part 3

